Varieties of Heyting algebras and superintuitionistic logics

Nick Bezhanishvili
Institute for Logic, Language and Computation
University of Amsterdam
http://www.phil.uu.nl/~bezhanishvili
email: N.Bezhanishvili@uva.nl
A Heyting algebra is a bounded distributive lattice $(A, \land, \lor, 0, 1)$ equipped with a binary operation \to, which is a right adjoint of \land. This means that for each $a, b, x \in A$ we have

$$a \land x \leq b \text{ iff } x \leq a \to b.$$
Heyting algebras

Heyting algebras pop up in different areas of mathematics.
Heyting algebras

Heyting algebras pop up in different areas of mathematics.

Logic: Heyting algebras are algebraic models of intuitionistic logic.
Heyting algebras

Heyting algebras pop up in different areas of mathematics.

1. **Logic**: Heyting algebras are algebraic models of intuitionistic logic.

2. **Topology**: opens of any topological space form a Heyting algebra.
Heyting algebras

Heyting algebras pop up in different areas of mathematics.

1. **Logic**: Heyting algebras are algebraic models of intuitionistic logic.

2. **Topology**: opens of any topological space form a Heyting algebra.

3. **Geometry**: open subpolyhedra of any polyhedron form a Heyting algebra.
Heyting algebras pop up in different areas of mathematics.

1. **Logic**: Heyting algebras are algebraic models of intuitionistic logic.

2. **Topology**: opens of any topological space form a Heyting algebra.

3. **Geometry**: open subpolyhedra of any polyhedron form a Heyting algebra.

4. **Category theory**: subobject classifier of any topos is a Heyting algebra.
Heyting algebras

Heyting algebras pop up in different areas of mathematics.

1. **Logic**: Heyting algebras are algebraic models of intuitionistic logic.

2. **Topology**: opens of any topological space form a Heyting algebra.

3. **Geometry**: open subpolyhedra of any polyhedron form a Heyting algebra.

4. **Category theory**: subobject classifier of any topos is a Heyting algebra.

5. **Universal algebra**: lattice of all congruences of any lattice is a Heyting algebra.
The goal of the tutorial is to give an insight into the complicated structure of the lattice of varieties of Heyting algebras.

The outline of the tutorial:

1. Heyting algebras and superintuitionistic logics
2. Representation of Heyting algebras
3. Hosoi classification of the lattice of varieties of Heyting algebras
4. Jankov formulas and splittings
5. Canonical formulas
Part 1: Heyting algebras and superintuitionistic logics
Constructive reasoning

One of the cornerstones of classical reasoning is the **law of excluded middle** \(p \lor \neg p \).
Constructive reasoning

One of the cornerstones of classical reasoning is the law of excluded middle $p \lor \neg p$.

Constructive viewpoint: Truth = Proof.
Constructive reasoning

One of the cornerstones of classical reasoning is the law of excluded middle \(p \lor \neg p \).

Constructive viewpoint: Truth = Proof.

The law of excluded middle \(p \lor \neg p \) is constructively unacceptable.
Constructive reasoning

One of the cornerstones of classical reasoning is the law of excluded middle $p \lor \neg p$.

Constructive viewpoint: Truth = Proof.

The law of excluded middle $p \lor \neg p$ is constructively unacceptable.

For example, we do not have a proof of Goldbach’s conjecture nor are we able to show that this conjecture does not hold.
Constructive reasoning

On the grounds that the only accepted reasoning should be constructive, the Dutch mathematician L. E. J. Brouwer rejected classical reasoning.
Constructive reasoning

On the grounds that the only accepted reasoning should be constructive, the Dutch mathematician L. E. J. Brouwer rejected classical reasoning.

Luitzen Egbertus Jan Brouwer (1881 - 1966)
Intuitionistic logic

In 1930’s Brouwer’s ideas led his student Heyting to introduce intuitionistic logic which formalizes constructive reasoning.
Intuitionistic logic

In 1930’s Brouwer’s ideas led his student Heyting to introduce intuitionistic logic which formalizes constructive reasoning.

Arend Heyting (1898 - 1980)
Intuitionistic logic

Roughly speaking, the axiomatization of intuitionistic logic is obtained by dropping the law of excluded middle from the axiomatization of classical logic.
Intuitionistic logic

Roughly speaking, the axiomatization of intuitionistic logic is obtained by dropping the law of excluded middle from the axiomatization of classical logic.

\[\text{CPC} = \text{classical propositional calculus} \]
\[\text{IPC} = \text{intuitionistic propositional calculus}. \]
Intuitionistic logic

Roughly speaking, the axiomatization of intuitionistic logic is obtained by dropping the law of excluded middle from the axiomatization of classical logic.

\[
\text{CPC} = \text{classical propositional calculus} \\
\text{IPC} = \text{intuitionistic propositional calculus.}
\]

The law of excluded middle is not derivable in intuitionistic logic. So \(\text{IPC} \nsubseteq \text{CPC} \).
Intuitionistic logic

Roughly speaking, the axiomatization of intuitionistic logic is obtained by dropping the law of excluded middle from the axiomatization of classical logic.

\[\text{CPC} = \text{classical propositional calculus} \]
\[\text{IPC} = \text{intuitionistic propositional calculus}. \]

The law of excluded middle is not derivable in intuitionistic logic. So \(\text{IPC} \nsubseteq \text{CPC} \).

In fact,

\[\text{CPC} = \text{IPC} + (p \lor \neg p). \]
Intuitionistic logic

Roughly speaking, the axiomatization of intuitionistic logic is obtained by dropping the law of excluded middle from the axiomatization of classical logic.

\[\text{CPC} = \text{classical propositional calculus} \]
\[\text{IPC} = \text{intuitionistic propositional calculus} \]

The law of excluded middle is not derivable in intuitionistic logic. So \(\text{IPC} \not\subseteq \text{CPC} \).

In fact,

\[\text{CPC} = \text{IPC} + (p \lor \neg p) \]

There are many logics in between \(\text{IPC} \) and \(\text{CPC} \).
Superintuitionistic logics

A superintuitionistic logic is a set of formulas containing IPC and closed under the rules of substitution and Modus Ponens.
A superintuitionistic logic is a set of formulas containing IPC and closed under the rules of substitution and Modus Ponens.

Superintuitionistic logics contained in CPC are often called intermediate logics because they are situated between IPC and CPC.
A superintuitionistic logic is a set of formulas containing IPC and closed under the rules of substitution and Modus Ponens.

Superintuitionistic logics contained in CPC are often called intermediate logics because they are situated between IPC and CPC.

As we will see, intermediate logics are exactly the consistent superintuitionistic logics.
Superintuitionistic logics

A superintuitionistic logic is a set of formulas containing IPC and closed under the rules of substitution and Modus Ponens.

Superintuitionistic logics contained in CPC are often called intermediate logics because they are situated between IPC and CPC.

As we will see, intermediate logics are exactly the consistent superintuitionistic logics.

Since we are interested in consistent logics, we will mostly concentrate on intermediate logics.
Intermediate logics

IPC

CPC = IPC + (¬p ∨ ¬¬p)

weak law of excluded middle

LC

LC = IPC + (p → q) ∨ (q → p)

Gödel-Dummett calculus
Intermediate logics

\[KC = IPC + (\neg p \lor \neg \neg p) \]

weak law of excluded middle
Intermediate logics

$$\text{LC} = \text{IPC} + (p \to q) \lor (q \to p)$$
Gödel-Dummett calculus

$$\text{KC} = \text{IPC} + (\neg p \lor \neg \neg p)$$
weak law of excluded middle
Each formula \(\varphi \) in the language of \textbf{IPC} corresponds to an equation \(\varphi \approx 1 \) in the theory of Heyting algebras.

Equational theories of Heyting algebras

Each formula φ in the language of IPC corresponds to an equation $\varphi \approx 1$ in the theory of Heyting algebras.

Conversely, each equation $\varphi \approx \psi$ can be rewritten as $\varphi \leftrightarrow \psi \approx 1$, which corresponds to the formula $\varphi \leftrightarrow \psi$.
Each formula φ in the language of IPC corresponds to an equation $\varphi \approx 1$ in the theory of Heyting algebras.

Conversely, each equation $\varphi \approx \psi$ can be rewritten as $\varphi \leftrightarrow \psi \approx 1$, which corresponds to the formula $\varphi \leftrightarrow \psi$.

This yields a one-to-one correspondence between superintuitionistic logics and equational theories of Heyting algebras.
Varieties of Heyting algebras

By the celebrated Birkhoff theorem, equational theories correspond to varieties; that is, classes of algebras closed under subalgebras, homomorphic images, and products.
Varieties of Heyting algebras

By the celebrated Birkhoff theorem, equational theories correspond to varieties; that is, classes of algebras closed under subalgebras, homomorphic images, and products.

Garrett Birkhoff (1911 - 1996)
Varieties of Heyting algebras

Thus, superintuitionistic logics correspond to varieties of Heyting algebras, while intermediate logics to non-trivial varieties of Heyting algebras.
Varieties of Heyting algebras

Thus, superintuitionistic logics correspond to varieties of Heyting algebras, while intermediate logics to non-trivial varieties of Heyting algebras.

\textbf{Heyt} = the variety of all Heyting algebras.

\textbf{Bool} = the variety of all Boolean algebras.
Thus, superintuitionistic logics correspond to varieties of Heyting algebras, while intermediate logics to non-trivial varieties of Heyting algebras.

Heyt = the variety of all Heyting algebras.

Bool = the variety of all Boolean algebras.

Λ(IPC) = the lattice of superintuitionistic logics.
Varieties of Heyting algebras

Thus, superintuitionistic logics correspond to varieties of Heyting algebras, while intermediate logics to non-trivial varieties of Heyting algebras.

\(\text{Heyt} = \) the variety of all Heyting algebras.

\(\text{Bool} = \) the variety of all Boolean algebras.

\(\Lambda(\text{IPC}) = \) the lattice of superintuitionistic logics.

\(\Lambda(\text{Heyt}) = \) the lattice of varieties of Heyting algebras.
Varieties of Heyting algebras

Thus, superintuitionistic logics correspond to varieties of Heyting algebras, while intermediate logics to non-trivial varieties of Heyting algebras.

Heyt = the variety of all Heyting algebras.

Bool = the variety of all Boolean algebras.

\(\Lambda(\text{IPC}) \) = the lattice of superintuitionistic logics.

\(\Lambda(\text{Heyt}) \) = the lattice of varieties of Heyting algebras.

Theorem. \(\Lambda(\text{IPC}) \) is dually isomorphic to \(\Lambda(\text{Heyt}) \).
Varieties of Heyting algebras

Thus, superintuitionistic logics correspond to varieties of Heyting algebras, while intermediate logics to non-trivial varieties of Heyting algebras.

\textbf{Heyt} = the variety of all Heyting algebras.

\textbf{Bool} = the variety of all Boolean algebras.

\(\Lambda(\text{IPC}) \) = the lattice of superintuitionistic logics.

\(\Lambda(\text{Heyt}) \) = the lattice of varieties of Heyting algebras.

\textbf{Theorem.} \(\Lambda(\text{IPC}) \) is dually isomorphic to \(\Lambda(\text{Heyt}) \).

Consequently, we can investigate superintuitionistic logics by means of their corresponding varieties of Heyting algebras.
Part 2: Representation of Heyting algebras
First typical example of a Heyting algebra

Open sets of any topological space X form a Heyting algebra, where for open $Y, Z \subseteq X$:

$$Y \rightarrow Z = \text{Int}(Y^c \cup Z), \quad \neg Y = \text{Int}(Y^c).$$
First typical example of a Heyting algebra

Open sets of any topological space X form a Heyting algebra, where for open $Y, Z \subseteq X$:

$$Y \to Z = \text{Int}(Y^c \cup Z), \quad \neg Y = \text{Int}(Y^c).$$
First typical example of a Heyting algebra

Open sets of any topological space X form a Heyting algebra, where for open $Y, Z \subseteq X$:

$$Y \rightarrow Z = \text{Int}(Y^c \cup Z), \quad \neg Y = \text{Int}(Y^c).$$
Open sets of any topological space X form a Heyting algebra, where for open $Y, Z \subseteq X$:

$$Y \rightarrow Z = \text{Int}(Y^c \cup Z), \quad \neg Y = \text{Int}(Y^c).$$
First typical example of a Heyting algebra

Open sets of any topological space X form a Heyting algebra, where for open $Y, Z \subseteq X$:

$$Y \rightarrow Z = \text{Int}(Y^c \cup Z), \quad \neg Y = \text{Int}(Y^c).$$

$$Y \lor \neg Y \neq \mathbb{R}$$
Stone Representation

Theorem (Stone, 1937). Every Heyting algebra can be embedded into the Heyting algebra of open sets of some topological space.
Stone Representation

Theorem (Stone, 1937). Every Heyting algebra can be embedded into the Heyting algebra of open sets of some topological space.

Stone representation

For every Heyting algebra \(A \) let \(X_A \) be the set of prime filters of \(A \).
For every Heyting algebra A let X_A be the set of prime filters of A. The **Stone map** $\varphi : A \rightarrow \mathcal{P}(X_A)$ is given by

$$\varphi(a) = \{x \in X_A : a \in x\}.$$
For every Heyting algebra A let X_A be the set of prime filters of A.

The **Stone map** $\varphi : A \to \mathcal{P}(X_A)$ is given by

\[
\varphi(a) = \{ x \in X_A : a \in x \}.
\]

Let Ω_A be the topology generated by the basis $\{ \varphi(a) : a \in A \}$.
For every Heyting algebra A let X_A be the set of prime filters of A.

The **Stone map** $\varphi : A \rightarrow \mathcal{P}(X_A)$ is given by

$$\varphi(a) = \{x \in X_A : a \in x\}.$$

Let Ω_A be the topology generated by the basis $\{\varphi(a) : a \in A\}$.

Theorem. $\varphi : A \rightarrow \Omega_A$ is a Heyting algebra embedding.
Second typical example of a Heyting algebra

Up-sets of any poset \((X, \leq)\) form a Heyting algebra where for up-sets \(U, V \subseteq X\):

\[
U \rightarrow V = X \setminus \downarrow(U - V), \quad \neg U = X \setminus \downarrow U
\]

Here \(U\) is an up-set if \(x \in U\) and \(x \leq y\) imply \(y \in U\) and

\[
\downarrow U = \{ x \in X : \exists y \in U \text{ with } x \leq y \}.
\]
Second typical example of a Heyting algebra

\[g \rightarrow \neg \neg g \]

\[0 \rightarrow g \vee \neg g \]

\[g \rightarrow \neg \neg g \]

\[1 \rightarrow \neg g \vee \neg g \]

\[1 \rightarrow \neg g \rightarrow g \]

\[0 \rightarrow g \vee \neg g \]
Kripke Representation

Theorem (Kripke, 1965). Every Heyting algebra can be embedded into the Heyting algebra of up-sets of some poset.
Kripke Representation

Theorem (Kripke, 1965). Every Heyting algebra can be embedded into the Heyting algebra of up-sets of some poset.

Saul Kripke
Kripke representation

For every Heyting algebra A, order the set X_A of prime filters of A by set-theoretic inclusion.
Kripke representation

For every Heyting algebra A, order the set X_A of prime filters of A by set-theoretic inclusion.

For a poset X let $Up(X)$ be the Heyting algebra of up-sets of X.
For every Heyting algebra A, order the set X_A of prime filters of A by set-theoretic inclusion.

For a poset X let $Up(X)$ be the Heyting algebra of up-sets of X.

Theorem. The Stone map $\varphi : A \to Up(X_A)$ is a Heyting algebra embedding.
For every Heyting algebra A, order the set X_A of prime filters of A by set-theoretic inclusion.

For a poset X let $\text{Up}(X)$ be the Heyting algebra of up-sets of X.

Theorem. The Stone map $\varphi : A \rightarrow \text{Up}(X_A)$ is a Heyting algebra embedding.

We want to characterize the φ-image of A.
For every Heyting algebra A, order the set X_A of prime filters of A by set-theoretic inclusion.

For a poset X let $\text{Up}(X)$ be the Heyting algebra of up-sets of X.

Theorem. The Stone map $\varphi : A \to \text{Up}(X_A)$ is a Heyting algebra embedding.

We want to characterize the φ-image of A.

For this we will define a topology on X_A and characterize this image in order-topological terms.
Kripke representation

For every Heyting algebra A, order the set X_A of prime filters of A by set-theoretic inclusion.

For a poset X let $\text{Up}(X)$ be the Heyting algebra of up-sets of X.

Theorem. The Stone map $\varphi : A \to \text{Up}(X_A)$ is a Heyting algebra embedding.

We want to characterize the φ-image of A.

For this we will define a topology on X_A and characterize this image in order-topological terms.

This topology will be the so-called patch topology of Ω_A.
Esakia duality

This approach was developed by Esakia in the 1970’s.
Esakia duality

This approach was developed by Esakia in the 1970’s.

Leo Esakia (1934 - 2010)
Esakia duality

An **Esakia space** is a pair \((X, \leq)\), where:

1. \(X\) is a Stone space (compact, Hausdorff, zero-dimensional).
2. \((X, \leq)\) is a poset.
3. \(\uparrow x\) is closed for each \(x \in X\).
4. If \(U\) is clopen (closed and open), then so is \(\downarrow U\).

Recall that \(\downarrow U\) is defined as \(\{x \in X : \exists y \in U \text{ with } x \leq y\}\).
Esakia duality

An Esakia space is a pair \((X, \leq)\), where:

1. **X** is a **Stone space** (compact, Hausdorff, zero-dimensional).
Esakia duality

An **Esakia space** is a pair \((X, \leq)\), where:

1. **\(X\) is a Stone space** (compact, Hausdorff, zero-dimensional).
2. \((X, \leq)\) is a poset.
An **Esakia space** is a pair \((X, \leq)\), where:

1. \(X\) is a **Stone space** (compact, Hausdorff, zero-dimensional).
2. \((X, \leq)\) is a poset.
3. \(\uparrow x\) is closed for each \(x \in X\).
An **Esakia space** is a pair \((X, \leq)\), where:

1. **\(X\)** is a **Stone space** (compact, Hausdorff, zero-dimensional).
2. \((X, \leq)\) is a poset.
3. \(\uparrow x\) is closed for each \(x \in X\). Here \(\uparrow x = \{y \in X : x \leq y\}\).
Esakia duality

An **Esakia space** is a pair \((X, \leq)\), where:

1. \(X\) is a **Stone space** (compact, Hausdorff, zero-dimensional).
2. \((X, \leq)\) is a poset.
3. \(\uparrow x\) is closed for each \(x \in X\). Here \(\uparrow x = \{y \in X : x \leq y\}\).
4. If \(U\) is clopen (**closed and open**), then so is \(\downarrow U\).
An **Esakia space** is a pair \((X, \leq)\), where:

1. **\(X\)** is a [Stone space](https://en.wikipedia.org/wiki/Stone_space) (compact, Hausdorff, zero-dimensional).
2. \((X, \leq)\) is a poset.
3. \(\uparrow x\) is closed for each \(x \in X\). Here \(\uparrow x = \{y \in X : x \leq y\}\).
4. If \(U\) is clopen (closed and open), then so is \(\downarrow U\). Recall that \(\downarrow U = \{x \in X : \exists y \in U \text{ with } x \leq y\}\).
Esakia duality

Given an Esakia space (X, \leq) we take the Heyting algebra $(\text{CpUp}(X), \cap, \cup, \to, \emptyset, X)$ of all clopen up-sets of X, where for $U, V \in \text{CpUp}(X)$:

$$U \to V = X - \downarrow(U - V).$$
Esakia duality

Given an Esakia space \((X, \leq)\) we take the Heyting algebra \((\text{CpUp}(X), \cap, \cup, \rightarrow, \emptyset, X)\) of all clopen up-sets of \(X\), where for \(U, V \in \text{CpUp}(X)\):

\[
U \rightarrow V = X - \downarrow(U - V).
\]

For each Heyting algebra \(A\) we take the set \(X_A\) of prime filters of \(A\) ordered by inclusion and topologized by the subbasis

\[
\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}.
\]
Esakia duality

Given an Esakia space \((X, \leq)\) we take the Heyting algebra \((\text{CpUp}(X), \cap, \cup, \to, \emptyset, X)\) of all clopen up-sets of \(X\), where for \(U, V \in \text{CpUp}(X)\):

\[
U \to V = X - \downarrow(U - V).
\]

For each Heyting algebra \(A\) we take the set \(X_A\) of prime filters of \(A\) ordered by inclusion and topologized by the subbasis

\[
\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}.
\]

Alternatively we can take \(\{\varphi(a) - \varphi(b) : a, b \in A\}\) as a basis for the topology.
Esakia Duality

Theorem.

For each Heyting algebra A the map $\varphi : A \to \text{CpUp}(X_A)$ is a Heyting algebra isomorphism.
Esakia Duality

Theorem.

1. For each Heyting algebra A the map $\varphi : A \rightarrow \text{CpUp}(X_A)$ is a Heyting algebra isomorphism.

2. For each Esakia space X, there is an order-homeomorphism between X and $X_{\text{CpUp}(X)}$.
Esakia Duality

Theorem.

1. For each Heyting algebra A the map $\varphi : A \to \text{CpUp}(X_A)$ is a Heyting algebra isomorphism.

2. For each Esakia space X, there is an order-hemeomorphism between X and $X_{\text{CpUp}(X)}$.

This is the object part of the duality between the category of Heyting algebras and Heyting algebra homomorphisms and the category of Esakia spaces and Esakia morphisms.
Priestley spaces

Order-topological representation of bounded distributive lattices was developed by Priestley in the 1970s.
Priestley spaces

Order-topological representation of bounded distributive lattices was developed by Priestley in the 1970s.

Hilary Priestley
In each Esakia space the following Priestley separation holds:

Thus, every Esakia space is a Priestley space, but not vice versa. It follows that Esakia duality is a restricted version of Priestley duality.
Priestley spaces

In each Esakia space the following Priestley separation holds:

\[x \not\leq y \text{ implies there is a clopen up-set } U \text{ such that } x \in U \text{ and } y \notin U. \]
Priestley spaces

In each Esakia space the following Priestley separation holds:

\[x \preceq y \] implies there is a clopen up-set \(U \) such that \(x \in U \) and \(y \notin U \).

Thus, every Esakia space is a Priestley space, but not vice versa.
In each Esakia space the following Priestley separation holds:

\[x \not\leq y \text{ implies there is a clopen up-set } U \text{ such that } x \in U \text{ and } y \notin U. \]

Thus, every Esakia space is a Priestley space, but not vice versa. It follows that Esakia duality is a restricted version of Priestley duality.
Recap

The lattice of superintuitionistic logics is dually isomorphic to the lattice of varieties of Heyting algebras.

Stone Representation: Every Heyting algebra can be embedded into the Heyting algebra of open sets of some topological space.

Kripke Representation: Every Heyting algebra can be embedded into the Heyting algebra of up-sets of some poset.

Esakia Representation: Every Heyting algebra is isomorphic to the Heyting algebra of clopen up-sets of some Esakia space.
Recap

- The lattice of superintuitionistic logics is dually isomorphic to the lattice of varieties of Heyting algebras.
Recap

1. The lattice of superintuitionistic logics is dually isomorphic to the lattice of varieties of Heyting algebras.

2. Stone Representation: Every Heyting algebra can be \textbf{embedded} into the Heyting algebra of \textit{open sets} of some topological space.
Recap

1. The lattice of superintuitionistic logics is dually isomorphic to the lattice of varieties of Heyting algebras.

2. Stone Representation: Every Heyting algebra can be **embedded** into the Heyting algebra of open sets of some topological space.

3. Kripke Representation: Every Heyting algebra can be **embedded** into the Heyting algebra of up-sets of some poset.
Recap

1. The lattice of superintuitionistic logics is dually isomorphic to the lattice of varieties of Heyting algebras.

2. Stone Representation: Every Heyting algebra can be embedded into the Heyting algebra of open sets of some topological space.

3. Kripke Representation: Every Heyting algebra can be embedded into the Heyting algebra of up-sets of some poset.

4. Esakia Representation: Every Heyting algebra is isomorphic to the Heyting algebra of clopen up-sets of some Esakia space.
Part 3: Depth and Hosoi classification
Depth of Heyting algebras

Let (X, \leq) be a poset.
Depth of Heyting algebras

Let \((X, \leq)\) be a poset.

We say that \(X\) is of depth \(n > 0\), denoted \(d(X) = n\), if there is a chain of \(n\) points in \(X\) and no other chain in \(X\) contains more than \(n\) points. The poset \(X\) is of finite depth if \(d(X) = n\) for some \(n > 0\).
Depth of Heyting algebras

Let \((X, \leq)\) be a poset.

1. We say that \(X\) is of **depth** \(n > 0\), denoted \(d(X) = n\), if there is a chain of \(n\) points in \(X\) and no other chain in \(X\) contains more than \(n\) points. The poset \(X\) is of finite depth if \(d(X) = n\) for some \(n > 0\).

2. We say that \(X\) is of **infinite depth**, denoted \(d(X) = \omega\), if for every \(n \in \omega\), \(X\) contains a chain consisting of \(n\) points.
Depth of Heyting algebras

Let \((X, \leq)\) be a poset.

1. We say that \(X\) is of **depth** \(n > 0\), denoted \(d(X) = n\), if there is a chain of \(n\) points in \(X\) and no other chain in \(X\) contains more than \(n\) points. The poset \(X\) is of finite depth if \(d(X) = n\) for some \(n > 0\).

2. We say that \(X\) is of **infinite depth**, denoted \(d(X) = \omega\), if for every \(n \in \omega\), \(X\) contains a chain consisting of \(n\) points.

Depth is also referred to as **height**.
Depth of Heyting algebras

Let \((X, \leq)\) be a poset.

1. We say that \(X\) is of depth \(n > 0\), denoted \(d(X) = n\), if there is a chain of \(n\) points in \(X\) and no other chain in \(X\) contains more than \(n\) points. The poset \(X\) is of finite depth if \(d(X) = n\) for some \(n > 0\).

2. We say that \(X\) is of infinite depth, denoted \(d(X) = \omega\), if for every \(n \in \omega\), \(X\) contains a chain consisting of \(n\) points.

Depth is also referred to as height.

Let \(A\) be a Heyting algebra.
Depth of Heyting algebras

Let \((X, \leq)\) be a poset.

1. We say that \(X\) is of depth \(n > 0\), denoted \(d(X) = n\), if there is a chain of \(n\) points in \(X\) and no other chain in \(X\) contains more than \(n\) points. The poset \(X\) is of finite depth if \(d(X) = n\) for some \(n > 0\).

2. We say that \(X\) is of infinite depth, denoted \(d(X) = \omega\), if for every \(n \in \omega\), \(X\) contains a chain consisting of \(n\) points.

Depth is also referred to as height.

Let \(A\) be a Heyting algebra.

The depth \(d(A)\) of \(A = \) the depth of the dual of \(A\).
Depth of Heyting algebras

Let \((X, \leq)\) be a poset.

1. We say that \(X\) is of depth \(n > 0\), denoted \(d(X) = n\), if there is a chain of \(n\) points in \(X\) and no other chain in \(X\) contains more than \(n\) points. The poset \(X\) is of finite depth if \(d(X) = n\) for some \(n > 0\).

2. We say that \(X\) is of infinite depth, denoted \(d(X) = \omega\), if for every \(n \in \omega\), \(X\) contains a chain consisting of \(n\) points.

Depth is also referred to as height.

Let \(A\) be a Heyting algebra.

The depth \(d(A)\) of \(A = \) the depth of the dual of \(A\).

Let \(V\) be a variety of Heyting algebras.
Depth of Heyting algebras

Let \((X, \leq)\) be a poset.

1. We say that \(X\) is of depth \(n > 0\), denoted \(d(X) = n\), if there is a chain of \(n\) points in \(X\) and no other chain in \(X\) contains more than \(n\) points. The poset \(X\) is of finite depth if \(d(X) = n\) for some \(n > 0\).

2. We say that \(X\) is of infinite depth, denoted \(d(X) = \omega\), if for every \(n \in \omega\), \(X\) contains a chain consisting of \(n\) points.

Depth is also referred to as height.

Let \(A\) be a Heyting algebra.

The depth \(d(A)\) of \(A = \) the depth of the dual of \(A\).

Let \(V\) be a variety of Heyting algebras.

The depth \(d(V)\) of \(V = \sup\{d(A) : A \in V\}\).
Chains

Let \mathcal{C}_n be the n-element chain.
Chains

Let \mathcal{C}_n be the n-element chain.

\[a \rightarrow b = \begin{cases}
1 & \text{if } a \leq b, \\
 b & \text{otherwise.}
\end{cases} \]
Chains

Let \mathcal{C}_n be the n-element chain.

\[a \rightarrow b = \begin{cases}
1 & \text{if } a \leq b, \\
 b & \text{otherwise.}
\end{cases} \]

\mathcal{C}_n is a Heyting algebra, where

\[d(\mathcal{C}_{n+1}) = n \]
Varieties of depth n

For a class K of Heyting algebras, let $\text{Var}(K)$ be the variety of Heyting algebras generated by K.

Varieties of depth n

For a class K of Heyting algebras, let $\text{Var}(K)$ be the variety of Heyting algebras generated by K.

Let Lin be the variety generated by all finite chains.
Varieties of depth n

For a class K of Heyting algebras, let $\text{Var}(K)$ be the variety of Heyting algebras generated by K.

Let Lin be the variety generated by all finite chains.

Let also D_n be the class of all Heyting algebras of depth n.
Varieties of depth \(n \)

For a class \(K \) of Heyting algebras, let \(\text{Var}(K) \) be the variety of Heyting algebras generated by \(K \).

Let \(\text{Lin} \) be the variety generated by all finite chains.

Let also \(D_n \) be the class of all Heyting algebras of depth \(n \).

We will see later that each \(D_n \) forms a variety.
Rough picture of the lattice
Filters and congruences

As in Boolean algebras, the lattice of filters of a Heyting algebra is isomorphic to the lattice of congruences. To each filter F corresponds the congruence θ_F defined by $a \theta_F b$ if $a \leftrightarrow b \in F$. To each congruence θ corresponds the filter $F_\theta = \{ a \in A : a \theta 1 \}$. Consequently, the variety of Heyting algebras is congruence distributive and has the congruence extension property.
As in Boolean algebras, the lattice of filters of a Heyting algebra is isomorphic to the lattice of congruences.

Consequently, the variety of Heyting algebras is congruence distributive and has the congruence extension property.
Filters and congruences

As in Boolean algebras, the lattice of filters of a Heyting algebra is isomorphic to the lattice of congruences.

To each filter F corresponds the congruence θ_F defined by

$$a \theta_F b \text{ if } a \leftrightarrow b \in F.$$
Filters and congruences

As in Boolean algebras, the lattice of filters of a Heyting algebra is isomorphic to the lattice of congruences.

To each filter F corresponds the congruence θ_F defined by

\[a \theta_F b \text{ if } a \leftrightarrow b \in F. \]

To each congruence θ corresponds the filter

\[F_\theta = \{ a \in A : a \theta 1 \}. \]
Filters and congruences

As in Boolean algebras, the lattice of filters of a Heyting algebra is isomorphic to the lattice of congruences.

To each filter F corresponds the congruence θ_F defined by

$$a \theta_F b \text{ if } a \leftrightarrow b \in F.$$

To each congruence θ corresponds the filter

$$F_\theta = \{a \in A : a \theta 1\}.$$

Consequently, the variety of Heyting algebras is congruence distributive and has the congruence extension property.
Subdirectly irreducible Heyting algebras

By another theorem of Birkhoff, every variety of algebras is generated by its subdirectly irreducible members.
Subdirectly irreducible Heyting algebras

By another theorem of Birkhoff, every variety of algebras is generated by its subdirectly irreducible members.

Theorem (Jankov, 1963). A Heyting algebra is subdirectly irreducible (s.i. for short) if it has a second largest element.
Subdirectly irreducible Heyting algebras

By another theorem of Birkhoff, every variety of algebras is generated by its *subdirectly irreducible* members.

Theorem (Jankov, 1963). A Heyting algebra is *subdirectly irreducible* (s.i. for short) if it has a second largest element.
Esakia duals of s.i. Heyting algebras

If a Heyting algebra A is s.i., then the dual of A has a least element, a root.

If an Esakia space is rooted and the root is an isolated point, then its dual Heyting algebra is s.i.
If a Heyting algebra A is s.i., then the dual of A has a least element, a root.

If an Esakia space is rooted and the root is an isolated point, then its dual Heyting algebra is s.i.
Jankov formulas

Let A be a finite subdirectly irreducible Heyting algebra, s the second largest element of A.

For each $a \in A$ we introduce a new variable p_a and define the Jankov formula $\chi(A)$ as the $(\land, \lor, \rightarrow, 0, 1)$-description of this algebra.

\[
\chi(A) = [\land\{p_a \land b \leftrightarrow p_a \land p_b : a, b \in A\} \land \\
\land\{p_a \lor b \leftrightarrow p_a \lor p_b : a, b \in A\} \land \\
\land\{p_a \rightarrow b \leftrightarrow p_a \rightarrow p_b : a, b \in A\} \land \\
\land\{p_{\neg a} \leftrightarrow \neg p_a : a \in A\}] \rightarrow p_s
\]
Jankov formulas

Let A be a finite subdirectly irreducible Heyting algebra, s the second largest element of A.

For each $a \in A$ we introduce a new variable p_a and define the Jankov formula $\chi(A)$ as the $(\land, \lor, \rightarrow, 0, 1)$-description of this algebra.

$$\chi(A) = [\land\{p_{a \land b} \leftrightarrow p_a \land p_b : a, b \in A\}\land$$
$$\land\{p_{a \lor b} \leftrightarrow p_a \lor p_b : a, b \in A\}\land$$
$$\land\{p_{a \rightarrow b} \leftrightarrow p_a \rightarrow p_b : a, b \in A\}\land$$
$$\land\{p_{\neg a} \leftrightarrow \neg p_a : a \in A\}] \rightarrow p_s$$

If we interpret p_a as a, then the Jankov formula of A is equal in A to s, i.e., it is pre-true in A.
Theorem (Jankov, 1963). Let B a Heyting algebra. Then

$$B \not\models \chi(A) \text{ iff } A \in \text{SH}(B).$$
Axiomatization of varieties of Heyting algebras

Theorem (Jankov, 1963). Let B a Heyting algebra. Then

$$B \nvdash \chi(A) \iff A \in \text{SH}(B).$$

Dimitri Jankov
Axiomatization of varieties of Heyting algebras

Theorem (Jankov, 1963). Let B a Heyting algebra. Then

$$B \not\models \chi(A) \iff A \in \text{SH}(B).$$

Proof. (Sketch). Suppose $B \not\models \chi(A)$. Then there exists a s.i. homomorphic image C of B such that $C \not\models \chi(A)$. Moreover $\chi(A)$ is pre-true in C. This means that there is a valuation ν on C such that

$$\nu(\bigwedge\{p_{a \land b} \leftrightarrow p_a \land p_b : a, b \in A\} \land \\
\bigwedge\{p_{a \lor b} \leftrightarrow p_a \lor p_b : a, b \in A\} \land \\
\bigwedge\{p_{a \rightarrow b} \leftrightarrow p_a \rightarrow p_b : a, b \in A\} \land \\
\bigwedge\{p_{\neg a} \leftrightarrow \neg p_a : a \in A\} = 1_C$$

and

$$\nu(p_s) = s_C$$
Axiomatization of varieties of Heyting algebras

Therefore, for all $a, b \in A$ we have:

\[
\begin{align*}
\nu(p_{a\land b}) &= \nu(p_a) \land \nu(p_b) \\
\nu(p_{a\lor b}) &= \nu(p_a) \lor \nu(p_b) \\
\nu(p_{a \to b}) &= \nu(p_a) \to \nu(p_b) \\
\nu(p_{\neg a}) &= \neg \nu(p_a) \\
\nu(p_s) &= s_C
\end{align*}
\]
Axiomatization of varieties of Heyting algebras

Therefore, for all $a, b \in A$ we have:

\[
\begin{align*}
\nu(p_a \land b) &= \nu(p_a) \land \nu(p_b) \\
\nu(p_a \lor b) &= \nu(p_a) \lor \nu(p_b) \\
\nu(p_a \rightarrow b) &= \nu(p_a) \rightarrow \nu(p_b) \\
\nu(p \neg a) &= \neg \nu(p_a) \\
\nu(p_s) &= s_C
\end{align*}
\]

We consider the map $h : A \rightarrow C$ given by $h(a) = \nu(p_a)$.
Axiomatization of varieties of Heyting algebras

Therefore, for all \(a, b \in A \) we have:

\[
\begin{align*}
\nu(p_a \land b) &= \nu(p_a) \land \nu(p_b) \\
\nu(p_a \lor b) &= \nu(p_a) \lor \nu(p_b) \\
\nu(p_a \rightarrow b) &= \nu(p_a) \rightarrow \nu(p_b) \\
\nu(p \neg a) &= \neg \nu(p_a) \\
\nu(p_s) &= s_C
\end{align*}
\]

We consider the map \(h : A \rightarrow C \) given by \(h(a) = \nu(p_a) \).

Then \(h \) is a Heyting embedding.
Therefore, for all \(a, b \in A \) we have:

\[
\begin{align*}
\nu(p_a \land b) &= \nu(p_a) \land \nu(p_b) \\
\nu(p_a \lor b) &= \nu(p_a) \lor \nu(p_b) \\
\nu(p_a \rightarrow b) &= \nu(p_a) \rightarrow \nu(p_b) \\
\nu(p \neg a) &= \neg \nu(p_a) \\
\nu(p_s) &= s_C
\end{align*}
\]

We consider the map \(h : A \rightarrow C \) given by \(h(a) = \nu(p_a) \).

Then \(h \) is a Heyting embedding.

Conversely, as \(A \not\models \chi(A) \) and \(A \in \textbf{SH}(B) \) we see that \(B \not\models \chi(A) \).
Jankov formulas are used to axiomatize many varieties of Heyting algebras.
Jankov formulas are used to axiomatize many varieties of Heyting algebras.

For example, they axiomatize all splitting varieties of Heyting algebras.
Jankov formulas are used to axiomatize many varieties of Heyting algebras.

For example, they axiomatize all splitting varieties of Heyting algebras.

Splittings started to play an important role in lattice theory in the 1940s.
Splittings

Jankov formulas are used to axiomatize many varieties of Heyting algebras.

For example, they axiomatize all splitting varieties of Heyting algebras.

Splittings started to play an important role in lattice theory in the 1940s.

A pair \((a, b)\) splits a lattice \(L\) if \(a \not\leq b\) and for each \(c \in L\):

\[a \leq c \text{ or } c \leq b \]
R. McKenzie in the 1970’s revisited splittings when he started an extensive study of lattices of varieties.
R. McKenzie in the 1970’s revisited splittings when he started an extensive study of lattices of varieties.
Figure: Splitting of the lattice of varieties of Heyting algebras
Theorem. For each subdirectly irreducible Heyting algebra A the pair $(\text{Var}(A), \text{Heyt} + \chi(A))$ splits the lattice of varieties of Heyting algebras.
Theorem. For each subdirectly irreducible Heyting algebra A the pair $(\text{Var}(A), \text{Heyt} + \chi(A))$ splits the lattice of varieties of Heyting algebras.

Proof. (Sketch) Since $A \not\models \chi(A)$, we see that $\text{Var}(A) \not\subseteq \text{Heyt} + \chi(A)$.
Theorem. For each subdirectly irreducible Heyting algebra A the pair $(\text{Var}(A), \text{Heyt} + \chi(A))$ splits the lattice of varieties of Heyting algebras.

Proof. (Sketch) Since $A \nsubseteq \chi(A)$, we see that $\text{Var}(A) \nsubseteq \text{Heyt} + \chi(A)$.

Suppose V is a variety such that $V \nsubseteq \text{Heyt} + \chi(A)$.

Theorem. For each subdirectly irreducible Heyting algebra A the pair $(\text{Var}(A), \text{Heyt} + \chi(A))$ splits the lattice of varieties of Heyting algebras.

Proof. (Sketch) Since $A \not\models \chi(A)$, we see that $\text{Var}(A) \not\subseteq \text{Heyt} + \chi(A)$.

Suppose V is a variety such that $V \not\subseteq \text{Heyt} + \chi(A)$.

Then there is $B \in V$ such that $B \not\models \chi(A)$.
Theorem. For each subdirectly irreducible Heyting algebra A the pair $(\text{Var}(A), \text{Heyt} + \chi(A))$ splits the lattice of varieties of Heyting algebras.

Proof. (Sketch) Since $A \not\models \chi(A)$, we see that $\text{Var}(A) \nsubseteq \text{Heyt} + \chi(A)$.

Suppose V is a variety such that $V \nsubseteq \text{Heyt} + \chi(A)$.

Then there is $B \in V$ such that $B \not\models \chi(A)$.

By Jankov’s theorem, $A \in \text{SH}(B)$ and so $\text{Var}(A) \subseteq V$.
Theorem. For each subdirectly irreducible Heyting algebra A the pair $(\text{Var}(A), \text{Heyt} + \chi(A))$ splits the lattice of varieties of Heyting algebras.

Proof. (Sketch) Since $A \not\models \chi(A)$, we see that $\text{Var}(A) \not\subseteq \text{Heyt} + \chi(A)$.

Suppose V is a variety such that $V \not\subseteq \text{Heyt} + \chi(A)$.

Then there is $B \in V$ such that $B \not\models \chi(A)$.

By Jankov’s theorem, $A \in \text{SH}(B)$ and so $\text{Var}(A) \subseteq V$.

The other direction follows from a result of McKenzie (1972).
Rough picture of the lattice

\[
\text{Var}(\mathcal{C}_3) \rightarrow \text{Bool} \\
\text{Var}(\mathcal{C}_4) \rightarrow \text{Heyt} + \chi(\mathcal{C}_4) \\
\vdots \\
\text{Lin} \rightarrow \text{Heyt} \\
\vdots \\
\text{Heyt} + \chi(\mathcal{C}_5)
\]
Continuum of varieties of Heyting algebras

Let A and B be s.i. Heyting algebras. We write $A \leq B$ if $A \in \text{SH}(B)$.

Theorem. If Δ is an \leq-antichain of finite s.i. algebras, then for each $I, J \subseteq \Delta$ with $I \neq J$, we have

\[\text{Heyt}^+ \{ \chi(A) : A \in I \} \neq \text{Heyt}^+ \{ \chi(A) : A \in J \}. \]

Proof. (Sketch) If $I \neq J$, then there is $B \in I$ such that $B/ \notin J$. Then $A \nleq B$ for each $A \in J$.

Therefore, by Jankov's theorem, $B | = \chi(A)$ for each $A \in J$.

So $B \in \text{Heyt}^+ \{ \chi(A) : A \in J \}$.

But $B \nmid = \chi(B)$. So $B/ \in \text{Heyt}^+ \{ \chi(A) : A \in I \}$.

How can we construct an \leq-antichain of finite s.i. algebras?
Continuum of varieties of Heyting algebras

Let A and B be s.i. Heyting algebras. We write $A \leq B$ if $A \in \text{SH}(B)$.

Theorem. If Δ is an \leq-antichain of finite s.i. algebras, then for each $I, J \subseteq \Delta$ with $I \neq J$, we have

$$\text{Heyt} + \{\chi(A) : A \in I\} \neq \text{Heyt} + \{\chi(A) : A \in J\}.$$
Continuum of varieties of Heyting algebras

Let A and B be s.i. Heyting algebras. We write $A \leq B$ if $A \in \text{SH}(B)$.

Theorem. If Δ is an \leq-antichain of finite s.i. algebras, then for each $I, J \subseteq \Delta$ with $I \neq J$, we have

$$\text{Heyt} + \{\chi(A) : A \in I\} \neq \text{Heyt} + \{\chi(A) : A \in J\}.$$

Proof. (Sketch) If $I \nsubseteq J$, then there is $B \in I$ such that $B \notin J$.

Continuum of varieties of Heyting algebras

Let A and B be s.i. Heyting algebras. We write $A \leq B$ if $A \in \text{SH}(B)$.

Theorem. If Δ is an \leq-antichain of finite s.i. algebras, then for each $I, J \subseteq \Delta$ with $I \neq J$, we have

$$\text{Heyt} + \{\chi(A) : A \in I\} \neq \text{Heyt} + \{\chi(A) : A \in J\}.$$

Proof. (Sketch) If $I \not\subseteq J$, then there is $B \in I$ such that $B \not\in J$.

Then $A \not\leq B$ for each $A \in J$.
Continuum of varieties of Heyting algebras

Let A and B be s.i. Heyting algebras. We write $A \leq B$ if $A \in \text{SH}(B)$.

Theorem. If Δ is an \leq-antichain of finite s.i. algebras, then for each $I, J \subseteq \Delta$ with $I \neq J$, we have

$$\text{Heyt} + \{\chi(A) : A \in I\} \neq \text{Heyt} + \{\chi(A) : A \in J\}.$$

Proof. (Sketch) If $I \not\subseteq J$, then there is $B \in I$ such that $B \notin J$.

Then $A \not\leq B$ for each $A \in J$. Therefore, by Jankov’s theorem, $B \models \chi(A)$ for each $A \in J$.

Continuum of varieties of Heyting algebras

Let A and B be s.i. Heyting algebras. We write $A \leq B$ if $A \in \text{SH}(B)$.

Theorem. If Δ is an \leq-antichain of finite s.i. algebras, then for each $I, J \subseteq \Delta$ with $I \neq J$, we have

$$\text{Heyt} + \{\chi(A) : A \in I\} \neq \text{Heyt} + \{\chi(A) : A \in J\}.$$

Proof. (Sketch) If $I \not\subseteq J$, then there is $B \in I$ such that $B \not\in J$. Then $A \not\leq B$ for each $A \in J$. Therefore, by Jankov’s theorem, $B \models \chi(A)$ for each $A \in J$.

So $B \in \text{Heyt} + \{\chi(A) : A \in J\}$.

Continuum of varieties of Heyting algebras

Let A and B be s.i. Heyting algebras. We write $A \leq B$ if $A \in \text{SH}(B)$.

Theorem. If Δ is an \leq-antichain of finite s.i. algebras, then for each $I, J \subseteq \Delta$ with $I \neq J$, we have

$$\text{Heyt} + \{\chi(A) : A \in I\} \neq \text{Heyt} + \{\chi(A) : A \in J\}.$$

Proof. (Sketch) If $I \not\subseteq J$, then there is $B \in I$ such that $B \not\in J$.

Then $A \not\leq B$ for each $A \in J$. Therefore, by Jankov’s theorem, $B \models \chi(A)$ for each $A \in J$.

So $B \in \text{Heyt} + \{\chi(A) : A \in J\}$.

But $B \not\models \chi(B)$. So $B \not\in \text{Heyt} + \{\chi(A) : A \in I\}$.

How can we construct an \leq-antichain of finite s.i. algebras?
Continuum of varieties of Heyting algebras

Let A and B be s.i. Heyting algebras. We write $A \leq B$ if $A \in \text{SH}(B)$.

Theorem. If Δ is an \leq-antichain of finite s.i. algebras, then for each $I, J \subseteq \Delta$ with $I \neq J$, we have

$$\text{Heyt} + \{\chi(A) : A \in I\} \neq \text{Heyt} + \{\chi(A) : A \in J\}.$$

Proof. (Sketch) If $I \not\subseteq J$, then there is $B \in I$ such that $B \notin J$.

Then $A \not\leq B$ for each $A \in J$. Therefore, by Jankov’s theorem, $B \models \chi(A)$ for each $A \in J$.

So $B \in \text{Heyt} + \{\chi(A) : A \in J\}$.

But $B \not\models \chi(B)$. So $B \notin \text{Heyt} + \{\chi(A) : A \in I\}$.

How can we construct an \leq-antichain of finite s.i. algebras?
Antichains

Lemma. Δ_1 is an \leq-antichain.
Antichains

Lemma. Δ_2 is an \leq-antichain.
Continuum of varieties of Heyting algebras

Corollary.

There is a continuum of varieties of Heyting algebras.
Continuum of varieties of Heyting algebras

Corollary.

1. There is a continuum of varieties of Heyting algebras.

2. In fact, there is a continuum of varieties of Heyting algebras of depth 3.
Corollary.

1. There is a continuum of varieties of Heyting algebras.

2. In fact, there is a continuum of varieties of Heyting algebras of depth 3.

3. And there is a continuum of varieties of Heyting algebras of width 3.
Rough picture of the lattice

\[\text{Var}(\mathcal{C}_3) \quad \text{Var}(\mathcal{C}_4) \quad \text{Lin} \quad \text{Heyt} \quad \text{Heyt} + \chi(\mathcal{C}_5) \quad \text{Heyt} + \chi(\mathcal{C}_4) \quad \text{Bool} \]
Varieties axiomatized by Jankov formulas

Is every variety of Heyting algebras axiomatized by Jankov formulas?

A variety V is locally finite if every finitely generated V-algebra is finite.

Theorem
Every locally finite variety of Heyting algebras is axiomatized by Jankov formulas.

Corollary
Varieties of finite depth are locally finite and hence axiomatized by Jankov formulas.
Varieties axiomatized by Jankov formulas

Is every variety of Heyting algebras axiomatized by Jankov formulas?
Is every variety of Heyting algebras axiomatized by Jankov formulas?

A variety V is **locally finite** if every finitely generated V-algebra is finite.
Varieties axiomatized by Jankov formulas

Is every variety of Heyting algebras axiomatized by Jankov formulas?

A variety V is **locally finite** if every finitely generated V-algebra is finite.

Theorem Every locally finite variety of Heyting algebras is axiomatized by Jankov formulas.
Varieties axiomatized by Jankov formulas

Is every variety of Heyting algebras axiomatized by Jankov formulas?

A variety V is **locally finite** if every finitely generated V-algebra is finite.

Theorem Every **locally finite** variety of Heyting algebras is axiomatized by Jankov formulas.

Corollary. Varieties of **finite depth** are locally finite and hence axiomatized by Jankov formulas.
Finitely generated algebras

However, there are continuum many non-locally finite varieties of Heyting algebras.
Finitely generated algebras

However, there are continuum many non-locally finite varieties of Heyting algebras.

Theorem (Rieger, 1949, Nishimura, 1960). The 1-generated free Heyting algebra, also called the Rieger-Nishimura lattice, is infinite.
The Rieger-Nishimura Lattice
The Rieger-Nishimura Lattice
The Rieger-Nishimura Lattice

\[
\begin{array}{c}
1 \\
\vdots \\
g \\
\neg g \\
0
\end{array}
\]
The Rieger-Nishimura Lattice

\[
\begin{array}{c}
1 \\
\vdots \\
0
\end{array}
\]

\[
\begin{array}{c}
g \lor \neg g \\
 g \\

\neg g
\end{array}
\]
The Rieger-Nishimura Lattice
The Rieger-Nishimura Lattice
The Rieger-Nishimura Lattice

\[
\begin{array}{c}
\text{1} \\
\vdots \\
\text{0}
\end{array}
\]
1-generated free Heyting algebra

\[\begin{array}{c}
1 \\
\vdots \\
\end{array} \]

\[
\begin{array}{c}
\neg\neg g \vee \neg g \\
\neg\neg g \rightarrow g \\
\neg\neg g \\
g \vee \neg g \\
g \\
\neg g \\
0
\end{array}
\]
1-generated free Heyting algebra
Axiomatization of varieties of Heyting algebras

There exist varieties of Heyting algebras that are not axiomatized by Jankov formulas.
Axiomatization of varieties of Heyting algebras

There exist varieties of Heyting algebras that are not axiomatized by Jankov formulas.

Problem: Can we generalize Jankov’s method to all varieties of Heyting algebras?
Recap
Recap

1. Classification of the lattice of varieties of Heyting algebras via their depth.

5. Problem: Can we generalize Jankov's method to all varieties of Heyting algebras?
Recap

1. Classification of the lattice of varieties of Heyting algebras via their depth.

Recap

1. Classification of the lattice of varieties of Heyting algebras via their depth.

Recap

1. Classification of the lattice of varieties of Heyting algebras via their depth.

Recap

1. Classification of the lattice of varieties of Heyting algebras via their depth.

5. **Problem:** Can we generalize Jankov’s method to all varieties of Heyting algebras?
Part 5: Canonical formulas
The affirmative answer was given by Michael Zakharyaschev via canonical formulas.
The affirmative answer was given by Michael Zakharyaschev via canonical formulas.
Locally finite reducts

We will give an algebraic account of this method.
Locally finite reducts

We will give an algebraic account of this method.

Although Heyting algebras are not locally finite, they have locally finite reducts.
Locally finite reducts

We will give an algebraic account of this method.

Although Heyting algebras are not locally finite, they have locally finite reducts.

Heyting algebras \((A, \wedge, \vee, \rightarrow, 0, 1)\).
Locally finite reducts

We will give an algebraic account of this method.

Although Heyting algebras are not locally finite, they have locally finite reducts.

Heyting algebras \((A, \wedge, \vee, \rightarrow, 0, 1)\).

\(\vee\)-free reducts \((A, \wedge, \rightarrow, 0, 1)\): implicative semilattices.
Locally finite reducts

We will give an algebraic account of this method.

Although Heyting algebras are not locally finite, they have locally finite reducts.

Heyting algebras \((A, \land, \lor, \rightarrow, 0, 1)\).

\(\lor\)-free reducts \((A, \land, \rightarrow, 0, 1)\): implicative semilattices.

\(\rightarrow\)-free reducts \((A, \land, \lor, 0, 1)\): distributive lattices.
Locally finite reducts

We will give an algebraic account of this method.

Although Heyting algebras are not locally finite, they have locally finite reducts.

Heyting algebras $(A, \wedge, \lor, \to, 0, 1)$.

\lor-free reducts $(A, \wedge, \to, 0, 1)$: implicative semilattices.

\to-free reducts $(A, \wedge, \lor, 0, 1)$: distributive lattices.

Theorem.

- (Diego, 1966). The variety of implicative semilattices is locally finite.

- (Folklore). The variety of distributive lattices is locally finite.
We will use these reducts to derive desired axiomatizations of varieties of Heyting algebras.
We will use these reducts to derive desired axiomatizations of varieties of Heyting algebras.

First we will need to extend the theory of Jankov formulas.
(\land, \to)-canonical formulas

We will use these reducts to derive desired axiomatizations of varieties of Heyting algebras.

First we will need to extend the theory of Jankov formulas.

Jankov formulas describe the full Heyting signature. We will now look at \lor-free reducts.
We will use these reducts to derive desired axiomatizations of varieties of Heyting algebras.

First we will need to extend the theory of Jankov formulas. Jankov formulas describe the full Heyting signature. We will now look at \(\lor \)-free reducts.

The homomorphisms will now preserve only \(\land, 0 \) and \(\to \). In general they do not preserve \(\lor \). But they may preserve some joins.
\[(\land, \to)\text{-canonical formulas}\]

We will use these reducts to derive desired axiomatizations of varieties of Heyting algebras.

First we will need to extend the theory of Jankov formulas. Jankov formulas describe the full Heyting signature. We will now look at \(\lor\)-free reducts.

The homomorphisms will now preserve only \(\land\), 0 and \(\to\). In general they do not preserve \(\lor\). But they may preserve some joins.

This can be encoded in the following formula.
Let A be a finite subdirectly irreducible Heyting algebra, s the second largest element of A, and D a subset of A^2. For each $a \in A$ we introduce a new variable p_a and define the (\land, \to)-canonical formula $\alpha(A, D)$ associated with A and D as

$$\alpha(A, D) = \left[\bigwedge \{ p_a \land p_b : a, b \in A \} \land \bigwedge \{ p_a \to p_b : a, b \in A \} \land \bigwedge \{ p_{\neg a} \land \neg p_a : a \in A \} \land \bigwedge \{ p_a \lor p_b : (a, b) \in D \} \right] \to p_s$$

Note that if $D = A^2$, then $\alpha(A, D) = \chi(A)$.
(\land, \to)-canonical formulas

Let A be a finite subdirectly irreducible Heyting algebra, s the second largest element of A, and D a subset of A^2.
Let A be a finite subdirectly irreducible Heyting algebra, s the second largest element of A, and D a subset of A^2.

For each $a \in A$ we introduce a new variable p_a and define the (\wedge, \to)-canonical formula $\alpha(A, D)$ associated with A and D as

\[
\alpha(A, D) = \left(\bigwedge \{ p_a \land \neg p_b : a, b \in A \} \right) \land \left(\bigwedge \{ p_a \to p_b : a, b \in A \} \right) \land \left(\bigwedge \{ \neg p_a \leftrightarrow p_a : a \in A \} \right) \land \left(\bigwedge \{ p_a \lor p_b : (a, b) \in D \} \right) \to p_s
\]
Let A be a finite subdirectly irreducible Heyting algebra, s the second largest element of A, and D a subset of A^2.

For each $a \in A$ we introduce a new variable p_a and define the \((\wedge, \rightarrow)\)-canonical formula $\alpha(A, D)$ associated with A and D as

\[
\alpha(A, D) = \bigwedge \{p_{a \land b} \leftrightarrow p_a \land p_b : a, b \in A\} \land \\
\bigwedge \{p_{a \rightarrow b} \leftrightarrow p_a \rightarrow p_b : a, b \in A\} \land \\
\bigwedge \{p_{\neg a} \leftrightarrow \neg p_a : a \in A\} \land \\
\bigwedge \{p_{a \lor b} \leftrightarrow p_a \lor p_b : (a, b) \in D\} \rightarrow p_s
\]
Let A be a finite subdirectly irreducible Heyting algebra, s the second largest element of A, and D a subset of A^2.

For each $a \in A$ we introduce a new variable p_a and define the (\land, \rightarrow)-canonical formula $\alpha(A, D)$ associated with A and D as

$$\alpha(A, D) = \left[\land \{ p_{a \land b} \leftrightarrow p_a \land p_b : a, b \in A \} \land \right.$$
$$\left. \land \{ p_{a \rightarrow b} \leftrightarrow p_a \rightarrow p_b : a, b \in A \} \land \right.$$
$$\land \{ p_{\neg a} \leftrightarrow \neg p_a : a \in A \} \land \right.$$
$$\land \{ p_{a \lor b} \leftrightarrow p_a \lor p_b : (a, b) \in D \} \right] \rightarrow p_s$$

Note that if $D = A^2$, then $\alpha(A, D) = \chi(A)$.
Theorem. Let A be a finite s.i. Heyting algebra, $D \subseteq A^2$, and B a Heyting algebra. Then
Theorem. Let A be a finite s.i. Heyting algebra, $D \subseteq A^2$, and B a Heyting algebra. Then

$B \not\models \alpha(A, D)$ iff there is a homomorphic image C of B and an (\land, \rightarrow)-embedding $h : A \rightarrow C$ such that $h(a \lor b) = h(a) \lor h(b)$ for each $(a, b) \in D$.

(\land, \rightarrow)-canonical formulas
Theorem. Let A be a finite s.i. Heyting algebra, $D \subseteq A^2$, and B a Heyting algebra. Then

$B \not\models \alpha(A, D)$ iff there is a homomorphic image C of B and an (\land, \rightarrow)-embedding $h : A \rightarrow C$ such that $h(a \lor b) = h(a) \lor h(b)$ for each $(a, b) \in D$.

Theorem. Every variety of Heyting algebras is axiomatized by $(\land, \rightarrow, 0)$-canonical formulas.
Theorem. Let A be a finite s.i. Heyting algebra, $D \subseteq A^2$, and B a Heyting algebra. Then

$B \not\models \alpha(A, D)$ iff there is a homomorphic image C of B and an (\land, \to)-embedding $h : A \rightarrow C$ such that $h(a \lor b) = h(a) \lor h(b)$ for each $(a, b) \in D$.

Theorem. Every variety of Heyting algebras is axiomatized by $(\land, \to, 0)$-canonical formulas.

We show that for each formula φ there exist finitely many A_1, \ldots, A_m and $D_i \subseteq A_i^2$ such that

$$\text{Heyt} + \varphi = \text{Heyt} + \alpha(A_1, D_1) + \cdots + \alpha(A_m, D_m)$$
(\land, \to)-canonical formulas

Proof idea. Suppose \(B \not\models \varphi \).
Proof idea. Suppose $B \not
ot\vDash \varphi$.

Then there exist elements $a_1, \ldots, a_n \in B$ on which φ is refuted.
(∧, →)-canonical formulas

Proof idea. Suppose B 6|= ϕ.
Then there exist elements a1 , . . . , an ∈ B on which ϕ is refuted.
We generate the implicative semilattice (A, ∧, →, 0) of B by the
subpolynomials Σ of ϕ(a1 , . . . , an).


\((\land, \rightarrow)\)-canonical formulas

Proof idea. Suppose \(B \not\models \varphi\).

Then there exist elements \(a_1, \ldots, a_n \in B\) on which \(\varphi\) is refuted.

We generate the **implicative semilattice** \((A, \land, \rightarrow, 0)\) of \(B\) by the subpolynomials \(\Sigma\) of \(\varphi(a_1, \ldots, a_n)\).

By Diego's theorem \((A, \land, \rightarrow, 0)\) is **finite**.
We define a “fake” $\dot{\lor}$ on A by $a \dot{\lor} b = \bigwedge\{s \in A : s \geq a, b\}$. Then $(\land, \rightarrow)\text{-canonical formulas}$ $(A, \land, \dot{\lor}, \rightarrow, 0)$ is a finite Heyting algebra. Moreover, if $a \lor b \in \Sigma$ then $a \lor b = a \dot{\lor} b$. This implies that the algebra $(A, \land, \dot{\lor}, \rightarrow, 0)$ refutes φ.

\[
(a \lor b) \leq a \dot{\lor} b
\]
We define a “fake” \vdash on A by $a \vdash b = \bigwedge \{s \in A : s \geq a, b\}$. Then $(A, \land, \vdash, 0, \rightarrow)$ is a finite Heyting algebra.
We define a “fake” $\dot{\lor}$ on A by $a \dot{\lor} b = \bigwedge \{s \in A : s \geq a, b\}$. Then $(A, \land, \dot{\lor}, 0, \rightarrow)$ is a finite Heyting algebra. Also for $a, b \in A$ we have

$$a \lor b \leq a \dot{\lor} b.$$
We define a “fake” $\hat{\vee}$ on A by $a \hat{\vee} b = \bigwedge \{s \in A : s \geq a, b\}$. Then $(A, \wedge, \hat{\vee}, 0, \to)$ is a finite Heyting algebra. Also for $a, b \in A$ we have

$$a \vee b \leq a \hat{\vee} b.$$

Moreover, if $a \vee b \in \Sigma$ then

$$a \vee b = a \hat{\vee} b.$$
We define a “fake” \vee on A by $a \dot{\vee} b = \bigwedge \{s \in A : s \geq a, b\}$. Then $(A, \wedge, \dot{\vee}, 0, \rightarrow)$ is a finite Heyting algebra. Also for $a, b \in A$ we have

$$a \vee b \leq a \dot{\vee} b.$$

Moreover, if $a \vee b \in \Sigma$ then

$$a \vee b = a \dot{\vee} b.$$

This implies that the algebra $(A, \wedge, \dot{\vee}, \rightarrow, 0)$ refutes φ.
Now we let $D = \{(a, b) : a \lor b \in \Sigma\}$.
Now we let \(D = \{(a, b) : a \lor b \in \Sigma\} \).

Then

\[
A \xrightarrow{i} B
\]

\(i \) is a \((\land, \rightarrow, 0)\)-embedding, preserving \(\lor \) on the elements of \(D \).
Now we let \(D = \{(a, b) : a \lor b \in \Sigma\} \).

Then

\[A \overset{i}{\longrightarrow} B \]

\(i \) is a \((\land, \to, 0)\)-embedding, preserving \(\lor \) on the elements of \(D \).

\(A \) may not be s.i.
We take a s.i. homomorphic image A' of A (such can always be found) via some κ that refutes φ. We also let D' be the κ-image of D.
We take a s.i. homomorphic image A' of A (such can always be found) via some κ that refutes φ. We also let D' be the κ-image of D. So

$$
\begin{array}{c}
A \xrightarrow{i} B \\
\downarrow \kappa \\
A'
\end{array}
$$

i is a $(\land, \to, 0)$-embedding, preserving \lor on the elements of D, and κ is a Heyting homomorphism.
Implicative semilattices have the congruence extension property.
(\land, \to)-canonical formulas

Implicative semilattices have the **congruence extension property**. Thus, there is an implicative semilattice C such that

$$
\begin{array}{ccc}
A & \xrightarrow{i} & B \\
\downarrow{\kappa} & & \downarrow{\xi} \\
A' & \xrightarrow{h} & C
\end{array}
$$

Onto $(\land, \to, 0)$-homomorphisms are Heyting homomorphisms, so C is a Heyting algebra that is a homomorphic image of B. Moreover, h preserves \lor on the elements of D'. So we found a finite s.i. algebra A' and a set $D' \subseteq A'^2$ such that A' is $(\land, \to, 0)$-embedded into a homomorphic image of B preserving \lor on D'.
Implicative semilattices have the **congruence extension property**. Thus, there is an implicative semillatice \(C \) such that

\[
\begin{array}{c}
A \xrightarrow{i} B \\
\downarrow \kappa \downarrow \xi \\
A' \xleftarrow{h} C
\end{array}
\]

Onto \((\land, \to, 0)\)-homomorphisms are Heyting homomorphisms, so \(C \) is a **Heyting algebra** that is a homomorphic image of \(B \).
\((\land, \rightarrow)\)-canonical formulas

Implicative semilattices have the \textit{congruence extension property}. Thus, there is an implicative semilattice \(C\) such that

\[
\begin{array}{c}
A \xleftarrow{i} \xrightarrow{\kappa} \xrightarrow{\xi} B \\
\downarrow \downarrow \downarrow \\
A' \xleftarrow{h} \xrightarrow{\eta} C
\end{array}
\]

Onto \((\land, \rightarrow, 0)\)-homomorphisms are Heyting homomorphisms, so \(C\) is a \textit{Heyting algebra} that is a \textit{homomorphic image} of \(B\).

Moreover, \(h\) preserves \(\lor\) on the elements of \(D'\).
Implicative semilattices have the **congruence extension property**. Thus, there is an implicative semilattice C such that

```
A \xleftarrow{i} \xrightarrow{i} B
\downarrow \kappa \downarrow \xi
A' \xleftarrow{h} \xrightarrow{h} C
```

Onto $(\land, \to, 0)$-homomorphisms are Heyting homomorphisms, so C is a **Heyting algebra** that is a homomorphic image of B.

Moreover, h preserves \lor on the elements of D'.

So we found a finite s.i. algebra A' and a set $D' \subseteq A'^2$ such that A' is $(\land, \to, 0)$-embedded into a homomorphic image of B preserving \lor on D'.
(\land, \to)-canonical formulas

So B refutes $\alpha(A', D')$.
(\wedge, \to)-canonical formulas

So B refutes $\alpha(A', D')$.

Let $k = |Sub(\varphi)|$.
\((\wedge, \rightarrow)\)-canonical formulas

So \(B\) refutes \(\alpha(A', D')\).

Let \(k = |Sub(\varphi)|\).

By Diego’s theorem there is \(M(k)\) such that every \(k\)-generated impliciative semilattice has less than \(M(k)\)-elements.
So B refutes $\alpha(A', D')$.

Let $k = |Sub(\varphi)|$.

By Diego’s theorem there is $M(k)$ such that every k-generated implicative semilattice has less than $M(k)$-elements.

Let A_1, \ldots, A_m be the list of all (finitely many) Heyting algebras of size $M(k)$-refuting φ.
(\wedge, \rightarrow)-canonical formulas

So B refutes $\alpha(A', D')$.

Let $k = |Sub(\varphi)|$.

By Diego’s theorem there is $M(k)$ such that every k-generated implicative semilattice has less than $M(k)$-elements.

Let A_1, \ldots, A_m be the list of all (finitely many) Heyting algebras of size $M(k)$-refuting φ.

Let V_i be a valuation refuting φ in A_i. Set

$$\Sigma_i = \{V_i(\psi) : \psi \in Sub(\varphi)\}.$$
So B refutes $\alpha(A', D')$.

Let $k = |Sub(\varphi)|$.

By Diego’s theorem there is $M(k)$ such that every k-generated implicitative semilattice has less than $M(k)$-elements.

Let A_1, \ldots, A_m be the list of all (finitely many) Heyting algebras of size $M(k)$-refuting φ.

Let V_i be a valuation refuting φ in A_i. Set

$$\Sigma_i = \{V_i(\psi) : \psi \in Sub(\varphi)\}.$$

Let $D_i = \{(a, b) : a \lor b \in \Sigma_i\}$.
So B refutes $\alpha(A', D')$.

Let $k = |\text{Sub}(\varphi)|$.

By Diego’s theorem there is $M(k)$ such that every k-generated implicative semilattice has less than $M(k)$-elements.

Let A_1, \ldots, A_m be the list of all (finitely many) Heyting algebras of size $M(k)$-refuting φ.

Let V_i be a valuation refuting φ in A_i. Set

$$\Sigma_i = \{V_i(\psi) : \psi \in \text{Sub}(\varphi)\}.$$

Let $D_i = \{(a, b) : a \lor b \in \Sigma_i\}$.

By construction $|A'| < M(k)$. So $(A', D') = (A_i, D_i)$ for some $i \leq m$.
Thus, we proved that $B \nmodels \varphi$ implies $B \nmodels \alpha(A_i, D_i)$ for some $i \leq m$.

(\land, \to)-canonical formulas
Thus, we proved that $B \nvdash \varphi$ implies $B \nvdash \alpha(A_i, D_i)$ for some $i \leq m$.

Conversely, let $B \nvdash \alpha(A_i, D_i)$ for some $i \leq m$.

(\land, \rightarrow)-canonical formulas

Thus, we proved that $B \nvdash \varphi$ implies $B \nvdash \alpha(A_i, D_i)$ for some $i \leq m$.

Conversely, let $B \nvdash \alpha(A_i, D_i)$ for some $i \leq m$.

Therefore, every variety of Heyting algebras is axiomatized by (\land, \rightarrow)-canonical formulas.
Thus, we proved that $B \not\models \varphi$ implies $B \not\models \alpha(A_i, D_i)$ for some $i \leq m$.

Conversely, let $B \not\models \alpha(A_i, D_i)$ for some $i \leq m$.

Then here is a homomorphic image C of B and an $(\land, \rightarrow, 0)$-embedding $h : A_i \rightarrow C$ such that $h(a \lor b) = h(a) \lor h(b)$ for each $(a, b) \in D_i$.

(\land, \rightarrow)-canonical formulas
Thus, we proved that $B \not\models \varphi$ implies $B \not\models \alpha(A_i, D_i)$ for some $i \leq m$.

Conversely, let $B \not\models \alpha(A_i, D_i)$ for some $i \leq m$.

Then here is a homomorphic image C of B and an $(\land, \to, 0)$-embedding $h : A_i \hookrightarrow C$ such that $h(a \lor b) = h(a) \lor h(b)$ for each $(a, b) \in D_i$.

By construction of D_i we have that $C \not\models \varphi$.

(\land, \to)-canonical formulas
Thus, we proved that $B \not\models \varphi$ implies $B \not\models \alpha(A_i, D_i)$ for some $i \leq m$.

Conversely, let $B \not\models \alpha(A_i, D_i)$ for some $i \leq m$.

Then here is a homomorphic image C of B and an $(\land, \to, 0)$-embedding $h : A_i \hookrightarrow C$ such that $h(a \lor b) = h(a) \lor h(b)$ for each $(a, b) \in D_i$.

By construction of D_i we have that $C \not\models \varphi$.

So $B \not\models \varphi$.

(\land, \to)-canonical formulas
Thus, we proved that $B \not\models \varphi$ implies $B \not\models \alpha(A_i, D_i)$ for some $i \leq m$.

Conversely, let $B \not\models \alpha(A_i, D_i)$ for some $i \leq m$.

Then there is a homomorphic image C of B and an $(\land, \to, 0)$-embedding $h : A_i \hookrightarrow C$ such that $h(a \lor b) = h(a) \lor h(b)$ for each $(a, b) \in D_i$.

By construction of D_i we have that $C \not\models \varphi$.

So $B \not\models \varphi$.

Thus, we proved

$$\text{Heyt} + \varphi = \text{Heyt} + \alpha(A_1, D_1) + \cdots + \alpha(A_m, D_m)$$
(\land, \to)-canonical formulas

Thus, we proved that $B \not\models \varphi$ implies $B \not\models \alpha(A_i, D_i)$ for some $i \leq m$.

Conversely, let $B \not\models \alpha(A_i, D_i)$ for some $i \leq m$.

Then here is a homomorphic image C of B and an $(\land, \to, 0)$-embedding $h : A_i \rightarrow C$ such that $h(a \lor b) = h(a) \lor h(b)$ for each $(a, b) \in D_i$.

By construction of D_i we have that $C \not\models \varphi$.

So $B \not\models \varphi$.

Thus, we proved

$$\text{Heyt} + \varphi = \text{Heyt} + \alpha(A_1, D_1) + \cdots + \alpha(A_m, D_m)$$

Therefore, every variety of Heyting algebras is axiomatized by (\land, \to)-canonical formulas.
Subframe formulas

\[\alpha(A, A^2) = \chi(A). \]
Subframe formulas

\[\alpha(A, A^2) = \chi(A). \]

\[\alpha(A, \emptyset) \] is called a subframe formula.
Subframe formulas

\[\alpha(A, A^2) = \chi(A). \]

\(\alpha(A, \emptyset) \) is called a subframe formula.

Subframes play the same role here as submodels in model theory.
Subframe formulas

\[\alpha(A, A^2) = \chi(A). \]

\[\alpha(A, \emptyset) \] is called a subframe formula.

Subframes play the same role here as submodels in model theory.

Theorem. Let \(A \) be a finite s.i. algebra and \(X_A \) its dual space. A Heyting algebra \(B \) refutes \(\alpha(A) \) iff \(X_A \) is a subframe \(X_B \).
Subframe formulas

\[\alpha(A, A^2) = \chi(A). \]

\(\alpha(A, \emptyset) \) is called a subframe formula.

Subframes play the same role here as submodels in model theory.

Theorem. Let \(A \) be a finite s.i. algebra and \(X_A \) its dual space. A Heyting algebra \(B \) refutes \(\alpha(A) \) iff \(X_A \) is a subframe \(X_B \).

\((\land, \to)\)-embeddability means that we take subframes of the dual space.
Subframe formulas

\[\alpha(A, A^2) = \chi(A). \]

\[\alpha(A, \emptyset) \] is called a subframe formula.

Subframes play the same role here as submodels in model theory.

Theorem. Let \(A \) be a finite s.i. algebra and \(X_A \) its dual space. A Heyting algebra \(B \) refutes \(\alpha(A) \) iff \(X_A \) is a subframe \(X_B \).

\((\land, \to)\)-embeddability means that we take subframes of the dual space.

There are continuum many logics axiomatized by such formulas.
Subframe formulas

\[\alpha(A, A^2) = \chi(A). \]

\(\alpha(A, \emptyset) \) is called a subframe formula.

Subframes play the same role here as submodels in model theory.

Theorem. Let \(A \) be a finite s.i. algebra and \(X_A \) its dual space. A Heyting algebra \(B \) refutes \(\alpha(A) \) iff \(X_A \) is a subframe \(X_B \).

\((\land, \to)\)-embeddability means that we take subframes of the dual space.

There are continuum many logics axiomatized by such formulas.

All subframe logics have the finite model property.
Subframe formulas

Theorem: Let A be a s.i. Heyting algebra and X_A its dual space. Then

- X_A has width $< n$ iff n-fork is not a subframe of X_A iff $\alpha(\mathcal{F}_n)$ is true in A.
Subframe formulas

Theorem: Let A be a s.i. Heyting algebra and X_A its dual space. Then

- X_A has width $< n$ iff n-fork is not a subframe of X_A iff $\alpha(\mathcal{F}_n)$ is true in A.

![Diagram](attachment:image.png)
Subframe formulas

Theorem: Let A be a s.i. Heyting algebra and X_A its dual space. Then

- X_A has width $< n$ iff n-fork is not a subframe of X_A iff $\alpha(\mathcal{F}_n)$ is true in A.

A variety of Heyting algebras \mathbf{V} is of width $< n$ if the width of X_A is $< n$ for each s.i. $A \in \mathbf{V}$.
Subframe formulas

Theorem: Let A be a s.i. Heyting algebra and X_A its dual space. Then

- X_A has width $< n$ iff n-fork is not a subframe of X_A iff $\alpha(\mathcal{F}_n)$ is true in A.

A variety of Heyting algebras V is of width $< n$ if the width of X_A is $< n$ for each s.i. $A \in V$.

V is of width $< n$ iff $A \models \alpha(\mathcal{F}_n)$, for each $A \in V$.
(\land, \lor)-canonical formulas

We can also develop the theory of (\land, \lor)-canonical formulas \(\gamma(A, D) \) using the \to-free locally finite reducts of Heyting algebras.
We can also develop the theory of \((\land, \lor)\)-canonical formulas \(\gamma(A, D)\) using the \(\to\)-free locally finite reducts of Heyting algebras.

The theory of these formulas is different than that of \((\land, \to)\)-canonical formulas.
We can also develop the theory of \((\land, \lor)\)-canonical formulas \(\gamma(A, D)\) using the \(\rightarrow\)-free locally finite reducts of Heyting algebras.

The theory of these formulas is different than that of \((\land, \rightarrow)\)-canonical formulas.

Theorem. Every variety of Heyting algebras is axiomatized by \((\land, \lor)\)-canonical formulas.
(∧, ∨)-canonical formulas

Let A be a finite s.i. Heyting algebra, let s be the second largest element of A, and let D be a subset of A^2. For each $a \in A$, introduce a new variable p_a, and set

$$
\Gamma = (p_0 \leftrightarrow \bot) \land (p_1 \leftrightarrow \top) \land \\
\land \{p_{a \land b} \leftrightarrow p_a \land p_b : a, b \in A\} \land \\
\land \{p_{a \lor b} \leftrightarrow p_a \lor p_b : a, b \in A\} \land \\
\land \{p_{a \rightarrow b} \leftrightarrow p_a \rightarrow p_b : (a, b) \in D\}
$$

and

$$
\Delta = \lor\{p_a \rightarrow p_b : a, b \in A \text{ with } a \nleq b\}.
$$

Then define the (\land, \lor)-canonical formula $\gamma(A, D)$ associated with A and D as

$$
\gamma(A, D) = \Gamma \rightarrow \Delta.
$$
If $D = A^2$, then $\gamma(A, D) = \chi(A)$. If $D = \emptyset$, then $\gamma(A, \emptyset) = \gamma(A)$.

Theorem. Let A be a finite s.i. Heyting algebra. A Heyting algebra B refutes $\gamma(A)$ iff X_A is an order-preserving image of X_B.

These formulas are counterparts of subframe formulas. There are continuum many logics axiomatized by such formulas.
(\land, \lor)-canonical formulas

If $D = A^2$, then $\gamma(A, D) = \chi(A)$. If $D = \emptyset$, then $\gamma(A, \emptyset) = \gamma(A)$

Theorem. Let A be a finite s.i. Heyting algebra. A Heyting algebra B refutes $\gamma(A)$ iff X_A is an order-preserving image of X_B.
If \(D = A^2 \), then \(\gamma(A, D) = \chi(A) \). If \(D = \emptyset \), then \(\gamma(A, \emptyset) = \gamma(A) \).

Theorem. Let \(A \) be a finite s.i. Heyting algebra. A Heyting algebra \(B \) refutes \(\gamma(A) \) iff \(X_A \) is an order-preserving image of \(X_B \).

These formulas are counterparts of subframe formulas.
If $D = A^2$, then $\gamma(A, D) = \chi(A)$. If $D = \emptyset$, then $\gamma(A, \emptyset) = \gamma(A)$.

Theorem. Let A be a finite s.i. Heyting algebra. A Heyting algebra B refutes $\gamma(A)$ iff X_A is an order-preserving image of X_B.

These formulas are counterparts of subframe formulas.

There are continuum many logics axiomatized by such formulas.
Applications of canonical formulas

- In obtaining large classes of logics with the finite model property.
Applications of canonical formulas

- In obtaining large classes of logics with the finite model property.

- In proving the Blok-Esakia isomorphism between the lattice of varieties of Heyting algebras and the subvarieties of the Grzegorczyk algebras.
Applications of canonical formulas

- In obtaining large classes of logics with the finite model property.

- In proving the Blok-Esakia isomorphism between the lattice of varieties of Heyting algebras and the subvarieties of the Grzegorczyk algebras.

- In showing that the substructural hierarchy of Ciabattoni-Galatos-Terui collapses over superintuitionistic logics.
Applications of canonical formulas

- In obtaining large classes of logics with the finite model property.

- In proving the Blok-Esakia isomorphism between the lattice of varieties of Heyting algebras and the subvarieties of the Grzegorczyk algebras.

- In showing that the substructural hierarchy of Ciabattoni-Galatos-Terui collapses over superintuitionistic logics.

- In proving that admissibility is decidable over intuitionistic logic and in finding a basis for admissible rules.
Open problems

- Characterize locally finite varieties of Heyting algebras.
Open problems

- Characterize locally finite varieties of Heyting algebras.
- Conjecture: A variety V of Heyting algebras is locally finite iff $F_V(2)$ is finite.
Open problems

- Characterize locally finite varieties of Heyting algebras.

- Conjecture: A variety V of Heyting algebras is **locally finite** iff $F_V(2)$ is finite.

- Is every variety of Heyting algebras generated by a class of Heyting algebras of the form $\text{Op}(X)$ for some topological space X (Kuznetsov, 1975).
Open problems

- Characterize locally finite varieties of Heyting algebras.
- Conjecture: A variety \(V \) of Heyting algebras is **locally finite** iff \(F_V(2) \) is finite.
- Is every variety of Heyting algebras generated by a class of Heyting algebras of the form \(\text{Op}(X) \) for some topological space \(X \) (Kuznetsov, 1975).

Heyt is generated by \(\text{Op}(\mathbb{R}) \) (McKinsey and Tarski, 1946).
Open problems

- Characterize locally finite varieties of Heyting algebras.

- Conjecture: A variety V of Heyting algebras is locally finite iff $F_V(2)$ is finite.

- Is every variety of Heyting algebras generated by a class of Heyting algebras of the form $\text{Op}(X)$ for some topological space X (Kuznetsov, 1975).

 Heyt is generated by $\text{Op}(\mathbb{R})$ (McKinsey and Tarski, 1946).

- Generalize the theory of (\land, \to) and (\land, \lor)-canonical formulas to other non-classical logics e.g. substructural logics. For modal logics this has been done already.