Uniform Deductive Interpolation

George Metcalfe

Mathematics Institute
University of Bern

Work in progress with Sam van Gool and Constantine Tsinakis

BLAST, 5-9 January 2015, Las Cruces NM
A set of equations over the real numbers

\[\{ x + z = 2y, \ 3x = y + z \} \]

has (equational) consequences

\[2x + y = 2z, \ 4x = 3y, \ x = x, \ 4x + w = 3y + w, \ldots \]

It has the same consequences restricted to the variables \(x, y \) as

\[\{ 4x = 3y \}. \]

Moreover, the same holds restricting to all variables different to \(z \).
A set of equations over the real numbers

\[\{ x + z = 2y, \ 3x = y + z \} \]

has (equational) consequences

\[2x + y = 2z, \ 4x = 3y, \ x = x, \ 4x + w = 3y + w, \ldots \]

It has the same consequences restricted to the variables \(x, y \) as

\[\{ 4x = 3y \}. \]

Moreover, the same holds restricting to all variables different to \(z \).
Uniform Interpolation in Algebra

A set of equations over the real numbers

\[\{ x + z = 2y, \ 3x = y + z \} \]

has (equational) consequences

\[2x + y = 2z, \quad 4x = 3y, \quad x = x, \quad 4x + w = 3y + w, \ldots \]

It has the same consequences restricted to the variables \(x, y \) as

\[\{ 4x = 3y \} \]

Moreover, the same holds restricting to all variables different to \(z \).
A set of equations over the real numbers

\[\{ x + z = 2y, \ 3x = y + z \} \]

has (equational) consequences

\[2x + y = 2z, \ 4x = 3y, \ x = x, \ 4x + w = 3y + w, \ldots \]

It has the same consequences restricted to the variables \(x, y \) as

\[\{ 4x = 3y \} \]

Moreover, the same holds restricting to all variables different to \(z \).
A set of equations over the real numbers

\[\{ x + z = 2y, \ 3x = y + z \} \]

has (equational) consequences

\[2x + y = 2z, \ 4x = 3y, \ x = x, \ 4x + w = 3y + w, \ldots \]

It has the same consequences restricted to the variables \(x, y \) as

\[\{ 4x = 3y \} . \]

Moreover, the same holds restricting to all variables different to \(z \).
Uniform Interpolation in Algebra

A set of equations over the real numbers
\[\{ x + z = 2y, \ 3x = y + z \} \]

has (equational) consequences
\[2x + y = 2z, \ 4x = 3y, \ x = x, \ 4x + w = 3y + w, \ldots \]

It has the same consequences restricted to the variables \(x, y \) as
\[\{ 4x = 3y \} . \]

Moreover, the same holds restricting to all variables different to \(z \).
Uniform Interpolation in Algebra

A set of equations over the real numbers

\[\{ x + z = 2y, \ 3x = y + z \} \]

has (equational) consequences

\[2x + y = 2z, \ 4x = 3y, \ x = x, \ 4x + w = 3y + w, \ldots \]

It has the same consequences restricted to the variables \(x, y \) as

\[\{ 4x = 3y \}. \]

Moreover, the same holds restricting to all variables different to \(z \).
A set of equations over the real numbers

\[\begin{align*}
 x + z &= 2y, \\
 3x &= y + z
\end{align*} \]

has (equational) consequences

\[\begin{align*}
 2x + y &= 2z, \\
 4x &= 3y, \\
 x &= x, \\
 4x + w &= 3y + w, \ldots
\end{align*} \]

It has the same consequences restricted to the variables \(x, y \) as

\[\{4x = 3y\}. \]

Moreover, the same holds restricting to all variables different to \(z \).
For any formula $\alpha(\bar{x}, \bar{y})$ of intuitionistic propositional logic IPC, there exist **left** and **right uniform interpolants**,

$$\alpha^L(\bar{y}) \quad \text{and} \quad \alpha^R(\bar{y}),$$

such that for any formula $\beta(\bar{y}, \bar{z})$,

$$\vdash_{\text{IPC}} \alpha(\bar{x}, \bar{y}) \rightarrow \beta(\bar{y}, \bar{z}) \iff \vdash_{\text{IPC}} \alpha^R(\bar{y}) \rightarrow \beta(\bar{y}, \bar{z})$$

$$\vdash_{\text{IPC}} \beta(\bar{y}, \bar{z}) \rightarrow \alpha(\bar{x}, \bar{y}) \iff \vdash_{\text{IPC}} \beta(\bar{y}, \bar{z}) \rightarrow \alpha^L(\bar{y}).$$

For any formula \(\alpha(\vec{x}, \vec{y}) \) of intuitionistic propositional logic IPC, there exist **left** and **right uniform interpolants**,

\[
\alpha^L(\vec{y}) \text{ and } \alpha^R(\vec{y}),
\]

such that for any formula \(\beta(\vec{y}, \vec{z}) \),

\[
\vdash_{\text{IPC}} \alpha(\vec{x}, \vec{y}) \rightarrow \beta(\vec{y}, \vec{z}) \iff \vdash_{\text{IPC}} \alpha^R(\vec{y}) \rightarrow \beta(\vec{y}, \vec{z})
\]

\[
\vdash_{\text{IPC}} \beta(\vec{y}, \vec{z}) \rightarrow \alpha(\vec{x}, \vec{y}) \iff \vdash_{\text{IPC}} \beta(\vec{y}, \vec{z}) \rightarrow \alpha^L(\vec{y}).
\]

For any formula $\alpha(\bar{x}, \bar{y})$ of intuitionistic propositional logic IPC, there exist **left** and **right uniform interpolants**,

$$\alpha^L(\bar{y})$$ and $$\alpha^R(\bar{y}),$$

such that for any formula $\beta(\bar{y}, \bar{z}),$

$$\vdash_{\text{IPC}} \alpha(\bar{x}, \bar{y}) \rightarrow \beta(\bar{y}, \bar{z}) \iff \vdash_{\text{IPC}} \alpha^R(\bar{y}) \rightarrow \beta(\bar{y}, \bar{z})$$

$$\vdash_{\text{IPC}} \beta(\bar{y}, \bar{z}) \rightarrow \alpha(\bar{x}, \bar{y}) \iff \vdash_{\text{IPC}} \beta(\bar{y}, \bar{z}) \rightarrow \alpha^L(\bar{y}).$$

Pitts’ theorem consists of two parts:

Variable restriction: for $\alpha(\bar{x}, \bar{y})$, there exist $\alpha^L(\bar{y})$, $\alpha^R(\bar{y})$ such that

\[
\vdash_{IPC} \alpha(\bar{x}, \bar{y}) \rightarrow \beta(\bar{y}) \quad \iff \quad \vdash_{IPC} \alpha^R(\bar{y}) \rightarrow \beta(\bar{y})
\]

\[
\vdash_{IPC} \beta(\bar{y}) \rightarrow \alpha(\bar{x}, \bar{y}) \quad \iff \quad \vdash_{IPC} \beta(\bar{y}) \rightarrow \alpha^L(\bar{y}).
\]

Craig interpolation: for $\alpha(\bar{x}, \bar{y})$, $\gamma(\bar{y}, \bar{z})$ satisfying

\[
\vdash_{IPC} \alpha(\bar{x}, \bar{y}) \rightarrow \gamma(\bar{y}, \bar{z}),
\]

there exists $\beta(\bar{y})$ such that

\[
\vdash_{IPC} \alpha(\bar{x}, \bar{y}) \rightarrow \beta(\bar{y}) \quad \text{and} \quad \vdash_{IPC} \beta(\bar{y}) \rightarrow \gamma(\bar{y}, \bar{z}).
\]
Pitts’ theorem consists of two parts:

Variable restriction: for \(\alpha(\bar{x}, \bar{y}) \), there exist \(\alpha^L(\bar{y}) \), \(\alpha^R(\bar{y}) \) such that

\[
\vdash_{\text{IPC}} \alpha(\bar{x}, \bar{y}) \rightarrow \beta(\bar{y}) \quad \iff \quad \vdash_{\text{IPC}} \alpha^R(\bar{y}) \rightarrow \beta(\bar{y})
\]

\[
\vdash_{\text{IPC}} \beta(\bar{y}) \rightarrow \alpha(\bar{x}, \bar{y}) \quad \iff \quad \vdash_{\text{IPC}} \beta(\bar{y}) \rightarrow \alpha^L(\bar{y})
\]

Craig interpolation: for \(\alpha(\bar{x}, \bar{y}) \), \(\gamma(\bar{y}, \bar{z}) \) satisfying

\[
\vdash_{\text{IPC}} \alpha(\bar{x}, \bar{y}) \rightarrow \gamma(\bar{y}, \bar{z}),
\]

there exists \(\beta(\bar{y}) \) such that

\[
\vdash_{\text{IPC}} \alpha(\bar{x}, \bar{y}) \rightarrow \beta(\bar{y}) \quad \text{and} \quad \vdash_{\text{IPC}} \beta(\bar{y}) \rightarrow \gamma(\bar{y}, \bar{z}).
\]
Variable Restriction and Craig Interpolation

Pitts’ theorem consists of two parts:

Variable restriction: for $\alpha(\vec{x}, \vec{y})$, there exist $\alpha^L(\vec{y})$, $\alpha^R(\vec{y})$ such that

\[
\vdash_{\text{IPC}} \alpha(\vec{x}, \vec{y}) \rightarrow \beta(\vec{y}) \iff \vdash_{\text{IPC}} \alpha^R(\vec{y}) \rightarrow \beta(\vec{y})
\]

\[
\vdash_{\text{IPC}} \beta(\vec{y}) \rightarrow \alpha(\vec{x}, \vec{y}) \iff \vdash_{\text{IPC}} \beta(\vec{y}) \rightarrow \alpha^L(\vec{y}).
\]

Craig interpolation: for $\alpha(\vec{x}, \vec{y})$, $\gamma(\vec{y}, \vec{z})$ satisfying

\[
\vdash_{\text{IPC}} \alpha(\vec{x}, \vec{y}) \rightarrow \gamma(\vec{y}, \vec{z}),
\]

there exists $\beta(\vec{y})$ such that

\[
\vdash_{\text{IPC}} \alpha(\vec{x}, \vec{y}) \rightarrow \beta(\vec{y}) \quad \text{and} \quad \vdash_{\text{IPC}} \beta(\vec{y}) \rightarrow \gamma(\vec{y}, \vec{z}).
\]
Which **varieties of algebras** admit uniform interpolation?
The **equational consequence relation** for a variety \mathcal{V} is defined by

$$\Sigma \models_{\mathcal{V}} \alpha \approx \beta \iff \text{for all } A \in \mathcal{V} \text{ and } e \in \text{hom}(\text{Fm}(\omega), A),$$

$$\Sigma \subseteq \ker(e) \implies \alpha \approx \beta \in \ker(e).$$

We also write $\Sigma \models_{\mathcal{V}} \Delta$ to denote that $\Sigma \models_{\mathcal{V}} \varepsilon$ for all $\varepsilon \in \Delta$.
A variety \mathcal{V} admits **deductive interpolation** if whenever

$$\Sigma \subseteq \text{Eq}(X), \quad \varepsilon \in \text{Eq}(Z), \quad Y = X \cap Z \neq \emptyset, \quad \text{and} \quad \Sigma \models_{\mathcal{V}} \varepsilon,$$

there exists $\Delta \subseteq \text{Eq}(Y)$ satisfying

$$\Sigma \models_{\mathcal{V}} \Delta \quad \text{and} \quad \Delta \models_{\mathcal{V}} \varepsilon.$$
The variety \mathcal{HA} of Heyting algebras admits deductive interpolation (equivalently, in this setting, Craig interpolation); e.g., for

$$\{x \land (y \lor z) \approx x, \ (x \land y) \land z \approx z\} \models_{\mathcal{HA}} (x \land w) \lor y \approx y,$$

we obtain

$$\{x \land (y \lor z) \approx x, \ (x \land y) \land z \approx z\} \models_{\mathcal{HA}} x \lor y \approx y$$

and

$$\{x \lor y \approx y\} \models_{\mathcal{HA}} (x \land w) \lor y \approx y.$$
The variety $\mathcal{H}A$ of **Heyting algebras** admits deductive interpolation (equivalently, in this setting, Craig interpolation); e.g., for

$$\{x \land (y \lor z) \approx x, (x \land y) \land z \approx z\} \models_{\mathcal{H}A} (x \land w) \lor y \approx y,$$

we obtain

$$\{x \land (y \lor z) \approx x, (x \land y) \land z \approx z\} \models_{\mathcal{H}A} x \lor y \approx y$$

and

$$\{x \lor y \approx y\} \models_{\mathcal{H}A} (x \land w) \lor y \approx y.$$
The variety \mathcal{HA} of **Heyting algebras** admits deductive interpolation (equivalently, in this setting, Craig interpolation); e.g., for

$$\{ x \land (y \lor z) \approx x, \ (x \land y) \land z \approx z \} \models_{\mathcal{HA}} (x \land w) \lor y \approx y,$$

we obtain

$$\{ x \land (y \lor z) \approx x, \ (x \land y) \land z \approx z \} \models_{\mathcal{HA}} x \lor y \approx y$$

and

$$\{ x \lor y \approx y \} \models_{\mathcal{HA}} (x \land w) \lor y \approx y.$$
Theorem (Pigozzi, Bacsich, Maksimova, Czelakowski, …)

A variety with the congruence extension property admits deductive interpolation if and only if it has the amalgamation property.

Further relationships between various forms of interpolation and amalgamation are described in:

Theorem (Pigozzi, Bacsich, Maksimova, Czelakowski, …)

A variety with the congruence extension property admits deductive interpolation if and only if it has the amalgamation property.

Further relationships between various forms of interpolation and amalgamation are described in:

A variety \mathcal{V} has **right variable restriction** if for X and $\Sigma \subseteq \text{Eq}(X)$ finite and $Y \subseteq X$, there is a finite $\Delta \subseteq \text{Eq}(Y)$ such that for all $\varepsilon \in \text{Eq}(Y)$,

$$\Sigma \models_{\mathcal{V}} \varepsilon \iff \Delta \models_{\mathcal{V}} \varepsilon.$$

Note. The following set always satisfies the above equivalence

$$\Delta = \{ \varepsilon \in \text{Eq}(Y) : \Sigma \models_{\mathcal{V}} \varepsilon \},$$

and will be finite up to equivalence in \mathcal{V} if \mathcal{V} is locally finite.
A variety \mathcal{V} has **right variable restriction** if for X and $\Sigma \subseteq \text{Eq}(X)$ finite and $Y \subseteq X$, there is a finite $\Delta \subseteq \text{Eq}(Y)$ such that for all $\varepsilon \in \text{Eq}(Y)$,

$$\Sigma \models_{\mathcal{V}} \varepsilon \iff \Delta \models_{\mathcal{V}} \varepsilon.$$

Note. The following set always satisfies the above equivalence

$$\Delta = \{ \varepsilon \in \text{Eq}(Y) : \Sigma \models_{\mathcal{V}} \varepsilon \},$$

and will be finite up to equivalence in \mathcal{V} if \mathcal{V} is locally finite.
A variety \mathcal{V} has **right variable restriction** if for X and $\Sigma \subseteq \text{Eq}(X)$ finite and $Y \subseteq X$, there is a finite $\Delta \subseteq \text{Eq}(Y)$ such that for all $\varepsilon \in \text{Eq}(Y)$,

$$\Sigma \models_{\mathcal{V}} \varepsilon \iff \Delta \models_{\mathcal{V}} \varepsilon.$$

Note. The following set always satisfies the above equivalence

$$\Delta = \{\varepsilon \in \text{Eq}(Y) : \Sigma \models_{\mathcal{V}} \varepsilon\},$$

and will be finite up to equivalence in \mathcal{V} if \mathcal{V} is locally finite.
Equivalently, for any finite X and $Y \subseteq X$,

$$\Theta \in \operatorname{Con}^\text{fg}(F_\mathcal{V}(X)) \implies \Theta \cap F_\mathcal{V}(Y)^2 \in \operatorname{Con}^\text{fg}(F_\mathcal{V}(Y)),$$

where $\operatorname{Con}^\text{fg}(A)$ denotes the finitely generated congruences on $A \in \mathcal{V}$.
Equivalently, for any finite \(X \) and \(Y \subseteq X \), the natural embedding

\[i : \text{Con}^\text{fg}(F^\mathcal{V}(Y)) \rightarrow \text{Con}^\text{fg}(F^\mathcal{V}(X)) \]

has a right adjoint \(j : \text{Con}^\text{fg}(F^\mathcal{V}(X)) \rightarrow \text{Con}^\text{fg}(F^\mathcal{V}(Y)) \) satisfying

\[i(\Theta) \subseteq \Psi \iff \Theta \subseteq j(\Psi). \]
Restricting Homomorphisms

Theorem

The following are equivalent for any variety \mathcal{V}:

1. \mathcal{V} admits right variable restriction.

2. For finitely presented $A, B \in \mathcal{V}$ and a homomorphism $f : A \to B$, the lifted map $f^* : \text{Con}^{\text{fg}}(A) \to \text{Con}^{\text{fg}}(B)$ has a right adjoint.
Theorem

The following are equivalent for any variety \(\mathcal{V} \):

1. \(\mathcal{V} \) admits **right variable restriction**.

2. For finitely presented \(A, B \in \mathcal{V} \) and a homomorphism \(f : A \to B \), the lifted map \(f^* : \text{Con}^{fg}(A) \to \text{Con}^{fg}(B) \) has a right adjoint.
Restricting Homomorphisms

Theorem

The following are equivalent for any variety \mathcal{V}:

1. \mathcal{V} admits right variable restriction.

2. For finitely presented $A, B \in \mathcal{V}$ and a homomorphism $f : A \to B$, the lifted map $f^* : \text{Con}^{fg}(A) \to \text{Con}^{fg}(B)$ has a right adjoint.
The following varieties admit right variable restriction:

- any locally finite variety
- Heyting algebras and modal algebras
- abelian groups, abelian ℓ-groups, and MV-algebras.

Groups and S4-algebras do not have the property; e.g., in S4-algebras,

\[\top \approx x \land \Box(x \rightarrow \Diamond y) \land \Box(y \rightarrow \Diamond x) \land \Box(x \rightarrow z) \land \Box(y \rightarrow \neg z) \]

does not restrict for the variable z (Ghilardi and Zawadowski 1995).
Examples

The following varieties admit right variable restriction:

- any locally finite variety
- Heyting algebras and modal algebras
- abelian groups, abelian ℓ-groups, and MV-algebras.

Groups and S4-algebras do not have the property; e.g., in S4-algebras,

$$\{ \top \approx x \land \Box(x \to \Diamond y) \land \Box(y \to \Diamond x) \land \Box(x \to z) \land \Box(y \to \neg z) \}$$

does not restrict for the variable z (Ghilardi and Zawadowski 1995).
Examples

The following varieties admit right variable restriction:

- any locally finite variety
- Heyting algebras and modal algebras
- abelian groups, abelian ℓ-groups, and MV-algebras.

Groups and S4-algebras do not have the property; e.g., in S4-algebras,

$$\{ \top \approx x \land \Box (x \rightarrow \Diamond y) \land \Box (y \rightarrow \Diamond x) \land \Box (x \rightarrow z) \land \Box (y \rightarrow \neg z) \}$$

does not restrict for the variable z (Ghilardi and Zawadowski 1995).
The following varieties admit right variable restriction:

- any locally finite variety
- Heyting algebras and modal algebras
- abelian groups, abelian ℓ-groups, and MV-algebras.

Groups and S4-algebras do not have the property; e.g., in S4-algebras,

$$\{ T \approx x \land \Box(x \rightarrow \Diamond y) \land \Box(y \rightarrow \Diamond x) \land \Box(x \rightarrow z) \land \Box(y \rightarrow \neg z) \}$$

does not restrict for the variable z (Ghilardi and Zawadowski 1995).
Examples

The following varieties admit right variable restriction:

- any locally finite variety
- Heyting algebras and modal algebras
- abelian groups, abelian \(\ell \)-groups, and MV-algebras.

Groups and S4-algebras do not have the property; e.g., in S4-algebras,

\[
\{ \top \approx x \land \Box(x \to \Diamond y) \land \Box(y \to \Diamond x) \land \Box(x \to z) \land \Box(y \to \neg z) \}
\]
does not restrict for the variable \(z \) (Ghilardi and Zawadowski 1995).
Examples

The following varieties admit right variable restriction:

- any locally finite variety
- Heyting algebras and modal algebras
- abelian groups, abelian ℓ-groups, and MV-algebras.

Groups and S4-algebras do not have the property; e.g., in S4-algebras,

$$\{ \top \approx x \land \Box(x \to \Diamond y) \land \Box(y \to \Diamond x) \land \Box(x \to z) \land \Box(y \to \neg z) \}$$

does not restrict for the variable z (Ghilardi and Zawadowski 1995).
A variety \mathcal{V} admits **right uniform deductive interpolation** if for X and $\Sigma \subseteq \text{Eq}(X)$ finite and $Y \subseteq X$, there exists a finite $\Delta \subseteq \text{Eq}(Y)$ such that whenever $\varepsilon \in \text{Eq}(Z)$ and $\emptyset \neq X \cap Z \subseteq Y$,

$$\Sigma \models_{\mathcal{V}} \varepsilon \iff \Delta \models_{\mathcal{V}} \varepsilon.$$

Theorem

The following are equivalent for any variety \mathcal{V}:

(1) \mathcal{V} admits right uniform deductive interpolation.

(2) \mathcal{V} admits deductive interpolation and right variable restriction.
A variety \mathcal{V} admits **right uniform deductive interpolation** if for X and $\Sigma \subseteq \text{Eq}(X)$ finite and $Y \subseteq X$, there exists a finite $\Delta \subseteq \text{Eq}(Y)$ such that whenever $\varepsilon \in \text{Eq}(Z)$ and $\emptyset \neq X \cap Z \subseteq Y$,

$$\Sigma \models_{\mathcal{V}} \varepsilon \iff \Delta \models_{\mathcal{V}} \varepsilon.$$

Theorem

The following are equivalent for any variety \mathcal{V}:

1. \mathcal{V} admits right uniform deductive interpolation.
2. \mathcal{V} admits deductive interpolation and right variable restriction.
Theorem

The following are equivalent for any variety \(\mathcal{V} \):

1. \(\mathcal{V} \) admits right uniform deductive interpolation.
2. For any countable \(X \) and \(Y \subseteq X \),
 \[
 \Theta \in \text{Con}^{fg}(F_{\mathcal{V}}(X)) \implies \Theta \cap F(Y)^2 \in \text{Con}^{fg}(F_{\mathcal{V}}(Y)).
 \]
3. For any countable \(X \) and \(Y \subseteq X \), the natural embedding of \(\text{Con}^{fg}(F_{\mathcal{V}}(Y)) \) into \(\text{Con}^{fg}(F_{\mathcal{V}}(X)) \) has a right adjoint.
The following are equivalent for any variety \mathcal{V}:

1. \mathcal{V} admits right uniform deductive interpolation.
2. For any countable X and $Y \subseteq X$,
 \[\Theta \in \text{Con}^{fg}(\mathcal{F}_\mathcal{V}(X)) \implies \Theta \cap \mathcal{F}(Y)^2 \in \text{Con}^{fg}(\mathcal{F}_\mathcal{V}(Y)). \]
3. For any countable X and $Y \subseteq X$, the natural embedding of $\text{Con}^{fg}(\mathcal{F}_\mathcal{V}(Y))$ into $\text{Con}^{fg}(\mathcal{F}_\mathcal{V}(X))$ has a right adjoint.
Theorem

The following are equivalent for any variety \mathcal{V}:

1. \mathcal{V} admits right uniform deductive interpolation.
2. For any countable X and $Y \subseteq X$,

 $\Theta \in \text{Con}^{fg}(F_{\mathcal{V}}(X)) \Rightarrow \Theta \cap F(Y)^2 \in \text{Con}^{fg}(F_{\mathcal{V}}(Y))$.

3. For any countable X and $Y \subseteq X$, the natural embedding of $\text{Con}^{fg}(F_{\mathcal{V}}(Y))$ into $\text{Con}^{fg}(F_{\mathcal{V}}(X))$ has a right adjoint.
Examples

The following varieties admit right uniform deductive interpolation:

- the varieties generated by two and three element Heyting chains
- Heyting algebras and modal algebras
- abelian groups, abelian \(\ell \)-groups, and MV-algebras.

S4-algebras, groups, and varieties generated by \(n \)-element Heyting chains for \(n \geq 4 \) do not have the property.
Examples

The following varieties admit right uniform deductive interpolation:

- the varieties generated by two and three element Heyting chains
- Heyting algebras and modal algebras
- abelian groups, abelian ℓ-groups, and MV-algebras.

S4-algebras, groups, and varieties generated by n-element Heyting chains for $n \geq 4$ do not have the property.
Examples

The following varieties admit right uniform deductive interpolation:

- the varieties generated by two and three element Heyting chains
- Heyting algebras and modal algebras
- abelian groups, abelian ℓ-groups, and MV-algebras.

S4-algebras, groups, and varieties generated by n-element Heyting chains for $n \geq 4$ do not have the property.
Examples

The following varieties admit right uniform deductive interpolation:

- the varieties generated by two and three element Heyting chains
- Heyting algebras and modal algebras
- abelian groups, abelian \(\ell \)-groups, and MV-algebras.

S4-algebras, groups, and varieties generated by \(n \)-element Heyting chains for \(n \geq 4 \) do not have the property.
The following varieties admit right uniform deductive interpolation:

- the varieties generated by two and three element Heyting chains
- Heyting algebras and modal algebras
- abelian groups, abelian ℓ-groups, and MV-algebras.

S4-algebras, groups, and varieties generated by n-element Heyting chains for $n \geq 4$ do not have the property.
\(\forall \) admits **left variable restriction** if for \(X \) and \(\Sigma \subseteq \text{Eq}(X) \) finite and \(Y \subseteq X \), there exists a finite \(\Delta \subseteq \text{Eq}(Y) \) such that for all \(\Pi \subseteq \text{Eq}(Y) \),

\[
\Pi \models_{\forall} \Sigma \iff \Pi \models_{\forall} \Delta.
\]

Equivalently, for \(X \) finite and \(Y \subseteq X \), the natural embedding of \(\text{Con}^{fg}(F_{\forall}(Y)) \) into \(\text{Con}^{fg}(F_{\forall}(X)) \) has a left adjoint.
Heyting algebras have left variable restriction, but not the variety \mathcal{ISL} of implicative semilattices, e.g.,

$$\Sigma = \{ \top \approx ((x \to z) \land (y \to z)) \to z \},$$

provides the consequences

$$\{ \top \approx x \} \models_{\mathcal{ISL}} \Sigma \quad \text{and} \quad \{ \top \approx y \} \models_{\mathcal{ISL}} \Sigma,$$

but there is no finite $\Delta \subseteq \text{Eq} \{x, y\}$ satisfying

$$\Delta \models_{\mathcal{ISL}} \Sigma, \quad \{ \top \approx x \} \models_{\mathcal{ISL}} \Delta, \quad \text{and} \quad \{ \top \approx y \} \models_{\mathcal{ISL}} \Delta.$$
Examples

Heyting algebras have left variable restriction, but not the variety \mathcal{ISL} of implicative semilattices, e.g.,

$$\Sigma = \{\top \approx ((x \rightarrow z) \land (y \rightarrow z)) \rightarrow z\},$$

provides the consequences

$$\{\top \approx x\} \models_{\mathcal{ISL}} \Sigma \quad \text{and} \quad \{\top \approx y\} \models_{\mathcal{ISL}} \Sigma,$$

but there is no finite $\Delta \subseteq \text{Eq}(\{x, y\})$ satisfying

$$\Delta \models_{\mathcal{ISL}} \Sigma, \quad \{\top \approx x\} \models_{\mathcal{ISL}} \Delta, \quad \text{and} \quad \{\top \approx y\} \models_{\mathcal{ISL}} \Delta.$$
Heyting algebras have left variable restriction, but not the variety \mathcal{ISL} of implicative semilattices, e.g.,

$$\Sigma = \{ \top \approx ((x \to z) \land (y \to z)) \to z \},$$

provides the consequences

$$\{ \top \approx x \} \models_{\mathcal{ISL}} \Sigma \quad \text{and} \quad \{ \top \approx y \} \models_{\mathcal{ISL}} \Sigma,$$

but there is no finite $\Delta \subseteq \text{Eq}(\{x, y\})$ satisfying

$$\Delta \models_{\mathcal{ISL}} \Sigma, \quad \{ \top \approx x \} \models_{\mathcal{ISL}} \Delta, \quad \text{and} \quad \{ \top \approx y \} \models_{\mathcal{ISL}} \Delta.$$
Heyting algebras have left variable restriction, but not the variety \mathcal{ISL} of implicative semilattices, e.g.,

$$\Sigma = \{ \top \approx ((x \to z) \land (y \to z)) \to z \},$$

provides the consequences

$$\{ \top \approx x \} \models_{\mathcal{ISL}} \Sigma \quad \text{and} \quad \{ \top \approx y \} \models_{\mathcal{ISL}} \Sigma,$$

but there is no finite $\Delta \subseteq \text{Eq} (\{ x, y \})$ satisfying

$$\Delta \models_{\mathcal{ISL}} \Sigma, \quad \{ \top \approx x \} \models_{\mathcal{ISL}} \Delta, \quad \text{and} \quad \{ \top \approx y \} \models_{\mathcal{ISL}} \Delta.$$
A variety \mathcal{V} admits **left uniform deductive interpolation** if for X and $\Sigma \subseteq \text{Eq}(X)$ finite, and $Y \subseteq X$, there exists a finite $\Delta \subseteq \text{Eq}(Y)$ such that whenever $\Pi \subseteq \text{Eq}(Z)$ and $\emptyset \neq X \cap Z \subseteq Y$,

$$\Pi \models_{\mathcal{V}} \Sigma \iff \Pi \models_{\mathcal{V}} \Delta.$$

Theorem

The following are equivalent for any variety \mathcal{V}:

1. \mathcal{V} admits left uniform deductive interpolation.
2. \mathcal{V} admits deductive interpolation and left variable restriction.
A variety \mathcal{V} admits **left uniform deductive interpolation** if for X and $\Sigma \subseteq \text{Eq}(X)$ finite, and $Y \subseteq X$, there exists a finite $\Delta \subseteq \text{Eq}(Y)$ such that whenever $\Pi \subseteq \text{Eq}(Z)$ and $\emptyset \neq X \cap Z \subseteq Y$,

$$\Pi \models_\mathcal{V} \Sigma \iff \Pi \models_\mathcal{V} \Delta.$$

Theorem

The following are equivalent for any variety \mathcal{V}:

1. \mathcal{V} admits left uniform deductive interpolation.
2. \mathcal{V} admits deductive interpolation and left variable restriction.
Restricting Homomorphisms

Theorem

The following are equivalent for any variety \(\mathcal{V} \):

1. For finitely presented \(A, B \in \mathcal{V} \) and a homomorphism \(f : A \to B \), the lifted map \(f^* : \text{Con}^{fg}(A) \to \text{Con}^{fg}(B) \) has a left adjoint.

2. \(\mathcal{V} \) has the left variable restriction property and for any finite \(X \), the join-semilattice \(\text{Con}^{fg}(F_{\mathcal{V}}(X)) \) is residuated.
Uniform deductive interpolation can be understood as a (weaker) form of quantifier elimination.

In particular, under certain conditions (e.g., for varieties of Heyting and modal algebras), uniform deductive interpolation for \(\forall \) implies the existence of a model completion for the first-order theory of \(\forall \).

S. Ghilardi and M. Zawadowski.

Can we weaken these conditions to cover other classes of algebras?
Uniform deductive interpolation can be understood as a (weaker) form of quantifier elimination.

In particular, under certain conditions (e.g., for varieties of Heyting and modal algebras), uniform deductive interpolation for \forall implies the existence of a model completion for the first-order theory of \forall.

S. Ghilardi and M. Zawadowski.
Sheaves, Games and Model Completions,

Can we weaken these conditions to cover other classes of algebras?
Uniform deductive interpolation can be understood as a (weaker) form of **quantifier elimination**.

In particular, under certain conditions (e.g., for varieties of Heyting and modal algebras), uniform deductive interpolation for \forall implies the existence of a **model completion** for the first-order theory of \forall.

S. Ghilardi and M. Zawadowski.
Sheaves, Games and Model Completions,

Can we weaken these conditions to cover other classes of algebras?