Some problems on countable dense homogeneous spaces

Jan van Mill

University of Amsterdam

Las Cruces, January 2015
• A space X is called *Countable Dense Homogeneous* (abbreviated: CDH) provided that for all countable dense subsets $D, E \subseteq X$ there is a homeomorphism $f : X \to X$ such that $f(D) = E$.

• Every *connected* CDH-space is homogeneous (essentially: Bennett 1972), so for connected spaces, CDH-ness can be thought of as a strong form of homogeneity.

• There are many CDH-spaces: Cantor set, irrational numbers, real line, Hilbert cube, manifolds without boundary, etc.

• A space X is called *Strongly Locally Homogeneous* (abbreviated: SLH) if it has an open base \mathcal{B} such that for all $B \in \mathcal{B}$ and $x, y \in B$ there is a homeomorphism $f : X \to X$ such that $f(x) = y$ and $f(z) = z$ for every $z \notin B$.

(Bessaga and Pełczyński, 1970) Every Polish SLH-space is CDH.

(Hrušák and Zamora Avilés, 2005) Every Borel CDH-space is Polish.

(Farah. Hrušák and Martínez Ranero, 2005) There is a CDH-subset of \mathbb{R} of size \aleph_1 (which is a λ-set).

Fitzpatrick and Zhou presented in 1990 in the *Open Problems in Topology Book* their open problems on countable dense homogeneity.

Its time for an update.
Problem 1

Is every connected, CDH, metric space SLH?

There is a connected, Polish, CDH-space X that is not SLH. In fact, a homeomorphism on X that is the identity on some nonempty open subset of X must be the identity on all of X (vM, 2005).

- Ungar proved in 1978 that that CDH metric continua are n-homogeneous for all n. Kennedy showed in 1984 that a 2-homogeneous metric continuum X must be SLH, provided that X admits a nontrivial homeomorphism that is the identity on some nonempty open set. Whether every 2-homogeneous metric continuum admits such a homeomorphism remains an open problem.

Problem 1’

Is every CDH continuum SLH?
It was claimed by Ungar in 1978 that every dense open subset of a locally compact separable metric CDH-space is again CDH. The proof is however incomplete. This prompted Fitzpatrick and Zhou to ask the following:

Problem 2

If X is CDH and metric and U is open in X, must U be CDH?

This problem was solved for Polish spaces by a variation of the example on the previous slide (vM, 2005) which has the property that it has a dense open connected subset that is rigid. A space is *rigid* if the identity function is the only homeomorphism. For *locally compact* spaces the question is wide open since 1978.
Problem 2’

If X is connected CDH, and metric, and U is an open connected set in X, must U be homogeneous? If U is homogeneous, is it necessarily CDH?

- The first part of Problem 2’ was answered by the example on the previous slide.
Problem 3

If X is a CDH, connected, Polish space, must X be locally connected?

1. This is known to have an affirmative answer in case X is also locally compact (Fitzpatrick, 1972). But for Polish spaces the question remains wide open.

2. There is some recent progress in another direction, though.

3. For a space X and $x \in X$ we let $Q(x, X)$ denote the quasi-component of x in X. That is, $Q(x, X)$ is the intersection of all clopen subsets of X that contain x.

4. Observe that if $x \in X$, and X is a subspace of Y, then $Q(x, X) \subseteq Q(x, Y)$.
Some problems on countable dense homogeneous spaces

Theorem 4 (vM, 2014)

Let X be a nonmeager connected CDH-space and assume that for some point x in X we have that for every open neighborhood W of x, $Q(x, W) \setminus \{x\}$ is nonempty. Then X is locally connected.

Theorem 11 implies that a counterexample to the Fitzpatrick-Zhou Problem promises to be very tricky. It is connected, yet its properties resemble those of complete Erdős space.

Corollary 5 (vM, 2014)

Every rimcompact connected CDH-space is locally connected.

No completeness assumptions!
Problem 4

For which 0-dimensional subsets X of \mathbb{R} is X^ω homogeneous? CDH?

1. This question was solved by Lawrence in 1998: all 0-dimensional subsets of \mathbb{R} have this property.

2. Nontrivial generalization by Dow and Pearl in 1997. They proved that X^ω is homogeneous for every zero-dimensional first countable space X.

3. Nice related problem (van Douwen and vM, 1979): Is there a homogeneous subspace of the real line with the fixed-point property for homeomorphisms?
Some problems on countable dense homogeneous spaces

Problem 5

Is the ω^th power of the Niemytzki plane homogeneous?

- Open.

Problem 6

Does there exist a CDH metric space that is not Polish?

Problem 6’

Is there an absolute example of a CDH metric space of cardinality ω_1?

- We already observed that Problems 6 and 6’ were solved in the affirmative by Farah, Hrušák and Martínez Ranero (2005).
Note that every countable CDH-space is discrete, hence \aleph_1 is the first cardinal where anything of CDH-interest can happen. Since \mathbb{R} is CDH and has size c, it is an interesting open problem what can happen for cardinals greater than \aleph_1 but below c.

It was shown recently in Hernandez-Gutiérrez, Hrušák and van Mill (2013) that for every cardinal κ such that $\omega_1 \leq \kappa \leq b$ there exists a CDH-subset of \mathbb{R} of size κ.

In that same paper, there are two more examples that are of interest:

1. A Baire CDH-subspace of the real line that is not Polish.
2. A compact CDH-space of uncountable weight in ZFC. [Steprans and Zhou proved in 1988 that 2^κ is CDH for every $\kappa < p$.]

Some problems on countable dense homogeneous spaces
In 2003, it was shown that there is a compact space X which is (topologically) homogeneous under $\text{MA}+\neg\text{CH}$ but not under CH (vM).

This space X has countable π-weight, character ω_1 and weight \mathfrak{c}.

Problem 7

Can there be a compact nowhere first countable homogeneous space of countable π-weight and weight less than \mathfrak{c}?

This cannot be done by a straightforward modification of the earlier methods since Juhász proved in 1993 that under MA, every compact space of countable π-weight and weight less than \mathfrak{c} is somewhere first countable.

Hence a homogeneous compactum of countable π-weight and weight less than \mathfrak{c} is first countable under MA.
Problem 8
What is the minimum weight of a nowhere first countable compactum of countable π-weight?

- Clearly, between ω_1 and c.

Theorem 9
This number is equal to κ_B, the least cardinal κ for which the real line \mathbb{R} can be covered by κ many nowhere dense sets.

Problem 10
1. Is there in ZFC a homogeneous nowhere first countable compact space of countable π-weight and weight κ_b?
2. If $\kappa_B^+ < c$, does there exist an example of a nowhere first countable compact space of countable π-weight and weight κ_B^+?
Some problems on countable dense homogeneous spaces

Theorem 11 (vM, 2014)

Let X be a nonmeager connected CDH-space and assume that for some point x in X we have that for every open neighborhood W of x, $Q(x, W) \setminus \{x\}$ is nonempty. Then X is locally connected.

Corollary 12 (vM, 2014)

Every rimcompact connected CDH-space is locally connected.

- No completeness assumptions!
For a space X we let $\mathcal{H}(X)$ denote its group of homeomorphisms. If $A \subseteq X$, then $\mathcal{H}(X; A)$ denotes $\{ f \in \mathcal{H}(X) : h \text{ restricts to the identity on } A \}$.

Proposition 13 (vM, 2011)

Let X be CDH. If $F \subseteq X$ is finite and $D, E \subseteq X \setminus F$ are countable and dense in X, then there is an element $f \in \mathcal{H}(X; F)$ such that $f(D) \subseteq E$.

Let X be any nonmeager CDH-space which is connected and contains a point x such that for every open neighborhood W of X, $Q(x, W) \setminus \{x\}$ is nonempty. By Bennett (1972), X is homogeneous. Hence this property of the point x is shared by all points.
Lemma 14

For every open neighborhood V of a point x in X we have that the interior of $Q(x, V)$ is nonempty.

Assume that for some open V in X containing x we have that $Q(x, V)$ has empty interior in X. Since V is open in X, and $Q(x, V)$ is closed in V, this clearly implies that $Q(x, V)$ is nowhere dense in X.

For every n pick an open neighborhood U_n of x such that $\text{diam } U_n < 2^{-n}$. The assumptions imply that for every n, there exists $y_n \in Q(x, U_n) \setminus \{x\}$.

Since $Q(x, V)$ is nowhere dense in X, we may pick a countable dense subset $E \subseteq X \setminus Q(x, V)$. Put $D = E \cup \{y_n : n \in \mathbb{N}\}$. By Proposition 13, there exists $f \in \mathcal{H}(X)$ such that $f(x) = x$ and $f(D) \subseteq E$.
Pick n so large that $f(U_n) \subseteq V$. Since $y_n \in Q(x, U_n) \setminus \{x\}$ we have that $f(y_n) \in Q(f(x), f(U_n)) \setminus \{f(x)\} = Q(x, f(U_n)) \setminus \{x\} \subseteq Q(x, V) \setminus \{x\}$. Since $f(y_n) \in E$ and $E \cap Q(x, V) = \emptyset$, this is a contradiction.

Corollary 15

For every open subset V of X and $x \in V$, we have that the interior of $Q(x, V)$ is dense in $Q(x, V)$.

Assume that the interior W of $Q(x, V)$ is not dense in $Q(x, V)$. Then there are $y \in Q(x, V)$ and an open subset U of x such that $y \in U \subseteq V$ and $U \cap W = \emptyset$. By Lemma 14, the interior P of $Q(y, U)$ is nonempty. However, $Q(y, U) \subseteq Q(y, V) = Q(x, V)$, hence $P \subseteq Q(x, V)$ and hence $P \subseteq W$. This is a contradiction since $\emptyset \neq P \subseteq U \cap W = \emptyset$.
Lemma 16

There is a point $x \in X$ with the following property: for every open neighborhood V of x, the quasi-component $Q(x, V)$ is a neighborhood of x.

Let \mathcal{U}_1 be a maximal pairwise disjoint collection of nonempty open subsets of X each of diameter less than 2^{-1}. Clearly, $\bigcup \mathcal{U}_1$ is dense. Fix $U \in \mathcal{U}_1$. Each quasi-component of U has dense interior by Corollary 15. Hence the interiors of all the quasi-components of elements of \mathcal{U}_1 form a pairwise disjoint open (and hence countable) collection with dense union. Let \mathcal{U}_2 be a maximal pairwise disjoint collection of nonempty open subsets of X each of diameter less than 2^{-2} and having the property that every element $V \in \mathcal{U}_2$ is contained in some quasi-component of some member from \mathcal{U}_1. It is clear that \mathcal{U}_2 has dense union.
Hence we can continue the same construction with all the quasi-components of members from \mathcal{U}_2, thus creating the family \mathcal{U}_3. Etc. At the end of the construction, we have a sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of subfamilies of pairwise disjoint nonempty open subsets of X such that for every n,

1. $\bigcup \mathcal{U}_n$ is dense in X,
2. if $V \in \mathcal{U}_{n+1}$, then there exist $U \in \mathcal{U}_n$ and $p \in U$ such that $V \subseteq Q(p, U)$,
3. $\text{mesh}\mathcal{U}_n < 2^{-n}$.

Since X is nonmeager, the collection $\{X \setminus \bigcup \mathcal{U}_n : n \in \mathbb{N}\}$ does not cover X. Hence there is a point $x \in X$ for which there exists for every $n \in \mathbb{N}$ an element $U_n \in \mathcal{U}_n$ such that $x \in U_n$. We claim that x is as required. To this end, let V be any open neighborhood of x. By (3), there exists n such that $x \in U_n \subseteq V$. Since by (2), $x \in U_{n+1} \subseteq Q(p, U_n)$ for some $p \in U_n$, we have $x \in U_{n+1} \subseteq Q(x, U_n)$. But $Q(x, U_n) \subseteq Q(x, V)$, and so $Q(x, V)$ is a neighborhood of x.
Again by homogeneity, the property of the point x in Lemma 16 is shared by all points.

Corollary 17

Every quasi-component of an arbitrary open subset of X is open.

Now let V be a nonempty open subset of X, and let W be a quasi-component of V. Observe that W is a clopen subset of V since the quasi-components of V form a pairwise disjoint family. If W is not connected, then we can write W as $A \cup B$, where A and B are disjoint nonempty open subsets of W. But then A and B are clearly clopen in V, which implies that W is not a quasi-component. Hence quasi-components of open subsets of X are both open and connected. So we arrive at the conclusion that X is locally connected. This completes the proof of Theorem 11.
Proposition 18

Every meager CDH-space which has an open base \mathcal{U} such that $\text{Fr } U$ is analytic for every $U \in \mathcal{U}$, is zero-dimensional.

- By a result of Fitzpatrick and Zhou (1992), it follows that X is a λ-set. Observe that by the Baire Category Theorem, a countable dense subspace of a Cantor set K is not a G_δ-subset of K. This implies that X does not contain a copy of the Cantor set. Let $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ be an open basis for X such that $\text{Fr } U_n$ is analytic for every n. Clearly, every $\text{Fr } U_n$ is countable since every uncountable analytic space contains a copy of the Cantor set. Let $D = \bigcup_n \text{Fr } U_n$. Then D is countable and hence G_δ and so $X \setminus D$ can be written as $\bigcup_n F_n$, where every F_n is closed in X. Since $F_n \cap \overline{U_m} = F_n \cap U_m$ for all n and m, it follows that each F_n is zero-dimensional.
So the cover

\[\{\{d\} : d \in D\} \cup \{F_n : n \in \mathbb{N}\} \]

of \(X \) consists of countably many closed and zero-dimensional subsets. Hence \(X \) is zero-dimensional by the Countable Closed Sum Theorem.

Let \(X \) be any CDH-space which is connected and rimcompact. Hence \(X \) is nonmeager by the previous result.

Pick an arbitrary \(x \in X \).

Lemma 19

For every open neighborhood \(V \) of \(x \) we have that \(Q(x, V) \setminus \{x\} \neq \emptyset \).

Pick an open sets \(A \) such that \(x \in A \subseteq \overline{A} \subseteq V \) while moreover \(\text{Fr} \ A \) is compact. We claim that \(Q(x, V) \) meets \(\text{Fr} \ A \).
Indeed, pick an arbitrary (relatively) clopen $E \subseteq V$ that contains x. Then $E \cap \overline{A}$ is clopen in \overline{A}, hence closed in X, and contains x. Suppose that $(E \cap \overline{A}) \cap \text{Fr } A = \emptyset$. Then $E \cap \overline{A} = E \cap A$ is nonempty and clopen in X which contradicts connectivity. Hence the collection

$$\{ E \cap \text{Fr } A : E \text{ is a (relatively) clopen subset of } V \text{ that contains } x \}$$

is a family of closed subsets of $\text{Fr } A$ with the finite intersection property. By compactness of $\text{Fr } A$, the set $Q(x, V)$ consequently meets $\text{Fr } A$.

So X is as in Theorem 11, and we are done.