Outline for Math 480 Section 70
Vector Spaces and Matrix Algebra
Spring 2010

Instructor: Guram Bezhanishvili

Email: gbezhani@nmsu.edu

Prerequisites: Any 300-level course with a MATH or STAT prefix, or consent of instructor.

Textbook: Matrix Analysis and Applied Linear Algebra by Carl D. Meyer. Publisher: SIAM.

Meetings: This will be an online course taught through Blackboard. Therefore, all the interaction will happen on Blackboard. Instead of regular lectures, I’ll be providing handouts on weekly basis, which will help you in reading the textbook. The handouts I will supply will closely follow the textbook, but in order to make reading the textbook easier, they will single out the most important points made in the textbook, and will aid you in better understanding of the text. In addition to this, there will be plenty of opportunities for us to communicate through Blackboard. I also plan to provide handouts, which will sum up the most important topics of the course, and provide you with guidelines for better grasp of the material.

Office Hours: Since this is an online course, I will hold weekly virtual office hours on Blackboard, which will happen through the chat window available on Blackboard. I will make myself available every Thursday, from 8 AM to 10 AM, Las Cruces time. In addition to this, you will have an opportunity to schedule individual chats with me through Blackboard. I encourage you to take advantage of this opportunity.

Course Objectives: Matrices and linear algebra arise in all parts of mathematics and in the disciplines that use mathematics. Matrices are a convenient means to encode information, and linear algebra provides the methodology to analyze and simplify matrices so that they become an effective tool in applications. The main objective of Math 480 is to study the basic linear algebra and its use in applications.

Material: We will cover portions of the first four chapters of the book. I also hope to be able to cover parts of chapters 5 and 7. Here is a more detailed account of what I plan to cover.
Chapter 1: Section 1.2 (in detail); Section 1.3 (briefly)
Chapter 2: Sections 2.1 through 2.5 (in detail)
Chapter 3: Sections 3.2 and 3.3 (in detail); Section 3.4 (briefly); Sections 3.5 through 3.7 (in detail); Section 3.9 (briefly); Section 3.10 (in detail)
Chapter 4: Sections 4.1 through 4.5 (in detail); Sections 4.7 and 4.8 (briefly)

I would also like to cover parts of Chapter 5 (Norms, Inner Products, and Orthogonality) and the beginning of Chapter 7 (Eigenvalues and Eigenvectors), but it will depend on how much time we will spend on the first four chapters.

Grades:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>20 %</td>
</tr>
<tr>
<td>Tests</td>
<td>50 %</td>
</tr>
<tr>
<td>(2 tests, 25% each)</td>
<td></td>
</tr>
<tr>
<td>Cumulative Final Exam</td>
<td>30 %</td>
</tr>
</tbody>
</table>

Homework: I will assign homework on a weekly basis, but will collect only samples of assigned homework once in two weeks for grading. You won’t know in advance which samples I’ll be collecting, which means that you will need to have them all done, and only upload the ones I’ll collect. You will have only a one hour time window for uploading your homework solutions. Therefore, it is crucial that you have them all done by the due date.

I will require that you do your homework either in Scientific WorkPlace (which is available on campus), in LaTeX, in Scientific Notebook, or in Word with some math capabilities, such as handling matrices. This is extremely useful because it will allow me to provide written feedback in the same file (which will always be in capital bold letters), and upload it back for your viewing.

To succeed in this course, daily work on practice problems is required. A student who can complete all homework problems will have a good grasp of the course material, and many of the questions on the exams will be of a similar nature to those assigned as homework.

Homework must be written up in a comprehensible way. I will not accept late assignments without a medical certificate or other university approved excuse within a reasonable time of the missed work.

Tests: There will be two tests, each of which will consist of 4 problems. The first test will cover the first two chapters and will be given before the spring break. The second test will cover parts of chapters three and four, and will be given in late April. I will give you a generous amount of time for you to first solve all the problems, then to type them up in your editor, and finally to upload them to Blackboard.

Cumulative Final Exam: The final exam will consist of 8 problems, and will
cover the whole course material. It will be given in the second week of May. It will be conducted the same way as the tests, but you will, of course, have even more time to complete it.

Missed Test Policy: Students must notify the instructor *before* an exam is missed in order to qualify for a make-up exam. Failure to do so will result in a “0” for any missed exam. The only valid excuses for missing an exam are documented illness, death in the family, or required participation in any university related function. Supporting documentation is required.

Withdrawals and Incompletes: You have the primary responsibility for withdrawing from the course. **The last date to drop with a “W” is Tuesday, March 9th.** Under University policy, an I grade is allowed only if a student has passed the first half of the course, and is precluded from completion of the second half of the course by a documented illness or family crisis.

Policies: I expect students to write clear prose and show some mathematical maturity in the work they turn in.

Important Notes:

- At the end of the final examination, the course is over, and there are no more opportunities to submit additional work.
- I will not compose extra credit assignments for students who want to try to compensate for poor results in another component of the course.

Disabilities: If you have or believe you have a disability, you may wish to self-identify. You can do so by providing documentation to the Services for Students with Disabilities (SSD) office in Corbett Center Room 244 at 646-6840. Appropriate accommodations may then be provided for you. If you are already registered with the SSD office, please make sure that I have received a copy of your “Accommodations Memo” from the SSD within the first two weeks. It is your responsibility to inform your SSD representative or me if the services or accommodations provided are not meeting your needs.