In these problems, suppose that G is the symmetry group of a wallpaper pattern, and that the translation subgroup has the form $T = \{(I, nt_1 + mt_2) : n, m \in \mathbb{Z}\}$ for some vectors t_1, t_2. Let $V = \{nt_1 + mt_2 : n, m \in \mathbb{Z}\}$, the translation lattice. Thus, $T = \{(I, v) : v \in V\}$.

Let G_0 be the point group of G.

Problem 1. Let $(A, w) \in G$. Prove that (A, w) commutes with each translation in G if and only if $A = I$. Use this to prove that G is Abelian if and only if $G_0 = \{I\}$.

Solution. Suppose that $(A, w) \in G$ commutes with each translation in G. Let $(I, v) \in T$. Then $(A, w)(I, v) = (I, v)(A, w)$. From our formula for composing isometries, this reduces to $(A, w + Av) = (A, w + v)$. Thus, $w + Av = w + v$, or $Av = v$. This holds for all $v \in V$. Therefore, $At_1 = t_1$ and $At_2 = t_2$. Since $\{t_1, t_2\}$ form a basis for \mathbb{R}^2, we have seen that this forces $A = I$. Conversely, if $A = I$, then $(I, w) \in T$. Since T is Abelian, any two translations commute, so (I, w) commutes with each translation.

Now, suppose that G is Abelian. Then each (A, w) commutes with everything in G, so with each translation in G. By the previous paragraph, this forces $A = I$ for each $(A, w) \in G$. This means $G_0 = \{I\}$. Conversely, if $G_0 = \{I\}$, then each element of G is a translation, by the definition of $G_0 = \{A : (A, w) \in G \text{ for some } w \in \mathbb{R}^2\}$. Then $G = T$ is Abelian.

Problem 2. Let G be a wallpaper group. If $G = \{(A, v) : A \in G_0, v \in V\}$, prove that G_0 is isomorphic to a subgroup of G, and that G is isomorphic to the semidirect product $T \times_{\varphi} G_0$, where $\varphi : G_0 \to \text{Aut}(T)$ is the usual action of G_0 on T, given by $\varphi(A)(v) = Av$.

Solution. Let $H = \{(A, 0) : A \in G_0\}$. Then H is a subset of G by the hypothesis that $G = \{(A, v) : A \in G_0, v \in V\}$. It is nonempty since $(I, 0) \in H$, as $I \in G_0$. Next, if $(A, 0), (B, 0) \in H$, then $(A, 0)(B, 0) = (AB, 0)$, and since $AB \in G_0$ (as $A, B \in G_0$ and G_0 is a group), we get $(AB, 0) \in H$. Also, $(A, 0)^{-1} = (A^{-1}, 0) \in H$ since $A^{-1} \in G_0$. Thus, H is a subgroup of G. The map $(A, 0) \mapsto A$ is a group isomorphism from H to G_0; that is is a homomorphism follows from the equation $(A, 0)(B, 0) = (AB, 0)$, it is onto by definition of H, and it is 1-1 since $(A, 0) = (I, 0)$ if and only if $A = I$.

Next, define $F : T \times_{\varphi} G_0 \to G$ by $F((I, v), A) = (A, v)$. This is a group homomorphism, since if $(I, v), (I, w) \in T$ and $A, B \in G_0$, we have

\[
\]
The homomorphism F is onto, since if $(A,v) \in G$, then $A \in G_0$ and $v \in V$, so $(I,v) \in T$, and $(A,v) = F((I,v), A)$. Finally, F is 1-1, since
\[
\ker(F) = \{(I,v), A) : F((I,v), A) = (I,0)\}
= \{(I,v), A) : (A,v) = (I,0)\}
= \{(I,0), I)\}
\]
is the identity subgroup of $T \times \varphi G_0$. Thus, F is an isomorphism.

Note that $T \cap H = \{(I,0)\}$ and $G = TH$. This means G is the internal semidirect product of T and H. Then $G \cong T \times_\theta H$, where $\theta : H \to \text{Aut}(T)$ is given by $\theta((A,0)) = (A,0)(I,v)(A,0)^{-1} = (I, Av)$. In other words, by identifying H with G_0 by the isomorphism given above, θ is the same action as φ. This gives another way to see that $G \cong T \times \varphi G_0$.

Problem 3. Suppose that a wallpaper group G contains no reflections, but that $g = (f, w) \in G$ is a glide reflection such that the reflection line of f is parallel to t_2 and perpendicular to t_1. Prove that $g^2 = (I, u)$ for some vector parallel to t_2, and that $w \notin V$.

(Hint: Write w as a linear combination of t_1 and t_2. For the last part, try composing g with a translation in G.)

Solution. We have $g^2 = (f, w)(f, w) = (f^2, f(w) + w) = (I, f(w) + w)$ since f is a reflection. Since f is linear, $f(f(w) + w) = f(f(w)) + f(w) = w + f(w)$, so the vector $u := f(w) + w$ is on the reflection line of f. Thus, it is parallel to t_2. If $w \in V$, then $(I, -w)(f, w) \in G$, but this element is equal to $(f, 0)$. This forces G to contain a reflection, which is false. Thus, $w \notin V$.

Problem 4. For the attached hexagon grid, determine t_1 and t_2, and draw all rotation centers on or inside the parallelogram formed by t_1 and t_2. Identify which rotation centers are for 60° rotations, which are for 120° rotations, and which are for 180°.

1. (If a point is a 60° rotation center, it is also a 120° and a 180° rotation center. Only mark it as a 60° rotation center.)

Solution. One choice of t_1 and t_2 is shown in the picture below.
Another choice would be \(s_1 = t_1 \) and \(s_2 = t_1 + t_2 \). Let \(r \) be the 60° rotation about the origin; this is a symmetry of the grid. We then have \(r(t_1) = t_1 + t_2 \) and \(r(t_2) = -t_1 \). With respect to the basis \(\{ t_1, t_2 \} \), \(r \) is represented by the matrix

\[
A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}.
\]

A point \(\alpha t_1 + \beta t_2 \) is a center of a 60° rotation center if

\[
\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = (I - A)^{-1} \begin{pmatrix} n \\ m \end{pmatrix}
\]

for some \(n, m \); this follows from Lemma 2.1. The corresponding rotation is \((r, nt_1 + mt_2) \). We see that \((\alpha, \beta) = (n - m, n) \). Thus, \((\alpha, \beta) \) can be any pair of integers, and these points correspond to the centers of the hexagons. Next, consider \(r^2 \), a 120° rotation. The matrix representing \(r^2 \) with respect to the basis \(\{ t_1, t_2 \} \) is

\[
A^2 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix},
\]

and \(\alpha t_1 + \beta t_2 \) is a 120° rotation center if

\[
\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = (I - A^2)^{-1} \begin{pmatrix} n \\ m \end{pmatrix},
\]

which yields \((\alpha, \beta) = \frac{1}{3}(2n - m, n + m) \). From a previous homework problem, we see that there are two points inside the parallelogram, \(\frac{2}{3} t_1 + \frac{1}{3} t_2 \) and \(\frac{1}{3} t_1 + \frac{2}{3} t_2 \). Finally, for \(r^3 = -I \), a 180° rotation, the centers, from previous work we have done, are \(\{ \frac{1}{2} v : v \in V \} \). We then get the points \(\frac{1}{2} t_1, \frac{1}{2} t_2, \frac{1}{2} t_1 + t_2, t_1 + \frac{1}{2} t_2, \frac{1}{2} t_1 + \frac{1}{2} t_2 \), which are not 60° rotation centers. The picture of all these centers is the following:
Problem 5. For the attached square grid, determine t_1 and t_2 and find the point group G_0.

Solution. Here is one choice for t_1 and t_2:

We have a 90° rotation r about the origin in G, and we have 4 linear reflections f_1, f_2, f_3, f_4, about a horizontal line, a vertical line, and the two lines making a 45° angle with the x-axis and one making a -45° angle. We then have 8 linear isometries $\{I, r, r^2, r^3, f_1, f_2, f_3, f_4\}$ in G, and the corresponding matrices lie in G_0. Thus, $|G_0| \geq 8$. The only possibilities are then $G_0 = D_4$ or $G_0 = D_6$. However, D_6 does not contain a 90° rotation. Thus, $G_0 = D_4$.