Homework #4, due Friday 2 March

1. Let r, s be rotation about the origin.

 (a) Prove that $r \circ s = s \circ r$.

 (b) Let (r, v) and (s, w) be rotations (so r, s are both rotations about the origin). Determine a condition on v, w in terms of r, s so that the two rotations have the same center. (Recall Lemma 2.1.)

 (c) Let $g = (r, v)$ and $h = (s, w)$ be rotations about different centers. Prove that $ghg^{-1}h^{-1}$ is a nontrivial translation.

2. Let f be reflection about the line through the origin which makes an angle of θ with the x-axis. Show that f is represented by the matrix

 \[
 \begin{pmatrix}
 \cos 2\theta & \sin 2\theta \\
 \sin 2\theta & -\cos 2\theta
 \end{pmatrix}.
 \]

3. Let f, g be reflections about lines through the origin. Prove that $f \circ g$ is a rotation about the origin. Moreover, if θ is the angle between the reflection lines, prove that $f \circ g$ is a rotation by $\theta/2$ (either clockwise or counterclockwise).

4. Let $r \neq I$ be a rotation about the origin, and let f be a reflection about a line not passing through the origin. Prove that $r \circ f$ is a nontrivial glide.

5. Write the symmetry group of the snake picture as a union of cosets of the translation subgroup T. Make sure to explicitly identify the coset representatives. Give some justification for why you know your description is correct.