Problem 1. Let \(\{t_1, t_2\} \) be an integral basis for \(V \). Prove that \(\{t_1, t_1 + t_2\} \) is another integral basis for \(V \).

Solution. Because the set \(\{t_1, t_1 + t_2\} \) has two elements, if it spans \(V \), then it is linearly independent, and so is a basis. Let \(t \in V \). Then \(t = nt_1 + mt_2 \) for some \(n, m \in \mathbb{Z} \). We then have \(t = nt_1 - mt_1 + m(t_1 + t_2) = (n - m)t_1 + m(t_1 + t_2) \). Since both \(n - m \) and \(m \) are integers, each \(t \in V \) is an integral linear combination of \(t_1, t_1 + t_2 \). Thus, \(\{t_1, t_1 + t_2\} \) is an integral basis for \(V \).

Problem 2. Let \(\{t_1, t_2\} \) be an integral basis for \(V \). Determine, with proof, whether or not \(\{t_1, t_1 + 2t_2\} \) is an integral basis for \(V \).

Solution. The set \(\{t_1, t_2 + 2t_2\} \) is not an integral basis for \(V \); for if it were, then we could write \(t_2 = nt_1 + m(t_1 + 2t_2) \) for some \(n, m \in \mathbb{Z} \). This would say \(t_2 = (n + m)t_1 + 2mt_2 \). By equating coefficients, this forces \(0 = n + m \) and \(1 = 2m \). This is using the fact that \(\{t_1, t_2\} \) is a basis for \(\mathbb{R}^2 \), and so each vector in \(\mathbb{R}^2 \) has a unique representation as a linear combination of them. These equations force \(m = 1/2 \) and \(n = -1/2 \). Since these are not integers, the original assumption is false.

Problem 3. Let \(\{t_1, t_2\} \) be an integral basis for \(V \). If \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Gl}_2(\mathbb{Z}) \), prove that \(\{at_1 + bt_2, ct_1 + dt_2\} \) is an integral basis for \(V \).

Solution. Let \(t \in V \). Then \(t = nt_1 + mt_2 \) for some \(n, m \in \mathbb{Z} \). We need to show that \(t \) is an integral linear combination of \(at_1 + bt_2 \) and \(ct_1 + dt_2 \). This amounts to showing that we can find \(x, y \in \mathbb{Z} \) with \(nt_1 + mt_2 = x(at_1 + bt_2) + y(ct_1 + dt_2) \). Expanding the right-hand side and equating coefficients yields

\[
\begin{align*}
n &= ax + cy \\
m &= bx + dy,
\end{align*}
\]

or, the single matrix equation

\[
\begin{pmatrix} n \\ m \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix},
\]

which yields

\[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}^{-1} \begin{pmatrix} n \\ m \end{pmatrix}.
\]

The \(2 \times 2 \) matrix in the first equation is in \(\text{Gl}_2(\mathbb{Z}) \), so its inverse is also in \(\text{Gl}_2(\mathbb{Z}) \). Thus, \(x, y \) are both integers, which is what we needed.
Problem 4. If $G_0 = D_6$, determine the matrix representations of the 60° rotation and the horizontal reflection if you use the basis $\{t_1, t_1 + t_2\}$ rather than $\{t_1, t_2\}$.

The vectors t_1, t_2 have the same length, and are separated by a 120° angle; see the picture in Problem 5. Thus, $r(t_1) = t_1 + t_2$ and $r(t_2) = t_1$. Also, $f(t_1) = t_1$ and $f(t_2) = -t_1 - t_2$. Writing in terms of the new basis, we have $r(t_1 + t_2) = t_2 = -t_1 + t_1 + t_2$ and $f(t_1 + t_2) = -t_2 = t_1 - (t_1 + t_2)$. Thus, the matrices in question are

$$
\begin{align*}
r & \leftrightarrow
\begin{pmatrix}
0 & -1 \\
1 & 1
\end{pmatrix}, \\
f & \leftrightarrow
\begin{pmatrix}
1 & 1 \\
0 & -1
\end{pmatrix}.
\end{align*}
$$

Problem 5. Suppose that $G_0 = D_{3,1}$ or $G_0 = D_6$. Suppose that the 3 reflections in $D_{3,1}$ (respectively the 6 reflections in D_6) are actually elements of the wallpaper group G. (We will see that this always happens.) Show that the long diagonal in the basic parallelogram determined by $\{t_1, t_2\}$ is a reflection line of a reflection in G. You might want to look back at the picture of the reflection lines on Page 38 of the textbook. Lemma 2.2 may prove useful.

Solution. Let f be the reflection through the origin parallel to the long diagonal. By assumption, $(f, 0) \in G$. Now, the long diagonal is obtained by shifting the reflection line of f by $\frac{1}{2}(t_1 + t_2)$. Thus, by Lemma 2.2, we see that $\tau_{t_1 + t_2} \circ f = (f, t_1 + t_2)$ is the reflection across the diagonal. Since $(f, t_1 + t_2) = (I, t_1 + t_2) \circ (f, 0)$ is the composition of two elements of G, the result is also an element of G. Thus, reflection across this line is a symmetry of the corresponding wallpaper pattern.

Problem 6. Suppose that $G_0 = D_4$, and that the vertical and horizontal reflections through the origin are elements in G. (This does not always happen.) Show that the lines in the following diagram are all reflection lines of reflections in the group G.

![Diagram showing reflection lines](image-url)
Solution. Let h and v be horizontal and vertical reflections (fixing the origin), respectively. Then the horizontal lines are reflection lines of the reflections $(h, 0), (h, t_2), (h, 2t_2)$, and the vertical lines are reflection lines of $(v, 0), (v, t_1), (v, 2t_1)$; this follows from Lemma 2.2. Since $(v, 0), (h, 0) \in G$, all six of these reflections are in G, by the same reasoning as in Problem 5.