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In this note we will discuss the structure theorem for finitely generated modules over

a principal ideal domain from the point of view of matrices. We will then give a matrix-

theoretic proof of the structure theorem from the point of view of the Smith normal form

of a matrix over a principal ideal domain. One benefit from this method is that there are

algorithms for finding the Smith normal form of a matrix, and these are programmed into

common computer algebra packages such as Maple and MuPAD. These packages will make

it easy to decompose a finitely generated module over a polynomial ring F [x] into a direct

sum of cyclic submodules.

To start, we will need to discuss describing a module by generators and relations. To

motivate the definition, let F be a field, and take A ∈ Mn(F ). We can make F n, viewed

as the set of column matrices over F , into an F [x]-module by defining f(x)v = f(A)v.

This module structure is dependent on A; we denote this module by (F n)A. Write A =

(aij). If {e1, . . . , en} is the standard basis of F n, then xej = Aej =
∑n

i=1 aijei for each j.

Consequently,

(x− a11)e1 − a21e2 − · · · − an1en = 0,

−a12e1 + (x− a22)e2 − · · · − an2en = 0,
...

−a1ne1 − · · ·+ (x− ann)en = 0.

The {ei} are generators of (F n)A as an F [x]-module, and these equations give relations

between the generators. Moreover, as we will prove later, the module (F n)A is determined

by the generators e1, . . . , en and the relations given above.

1 Generators and Relations

Let R be a principal ideal domain and let M be a finitely generated R-module. If {m1, . . . ,mn}
is a set of generators of M , then we have a surjective R-module homomorphism ϕ : Rn → M

given by sending (r1, . . . , rn) to
∑n

i=1 rimi. Let K be the kernel of ϕ. Then M ∼= Rn/K,

a fact we will use repeatedly. If (r1, . . . , rn) ∈ K, then
∑n

i=1 rimi = 0. Thus, an element
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of K gives rise to a relation among the generators {m1, . . . ,mn}. We will refer to K as the

relation submodule of Rn relative to the generators m1, . . . ,mn. It is known that K is finitely

generated; we will give a proof of this fact for the module (F n)A described in the previous

section. Suppose that {k1, . . . , km} ⊆ Rn is a generating set for K. If ki = (ai1, ai2, . . . , ain),

then we will refer to the matrix (aij) over R as the relation matrix for M relative to the

generating set {m1, . . . ,mn} of M and the generating set {k1, . . . , km} of K. This matrix

has ki as its i-th row for each i. Since this matrix depends not just on the generating sets

for M and K but by the order in which we write the elements, we will use ordered sets, or

lists, to denote generating sets. We will write [m1, . . . ,mn] to denote an ordered n-tuple.

Generating sets for a module M and for a relation submodule K are not unique. The

goal of this section is to see how changing either results in a change in the relation matrix.

To get an idea of the general situation, we consider some examples.

Example 1.1. Let M = Z4 ⊕ Z12. Then M is generated by m1 = (1, 0) and m2 = (0, 1).

Moreover, 4m1 = 0 and 12m2 = 0. In fact, if we consider the homomorphism ϕ : Z2 → M

sending (r, s) to rm1 + sm2, then

ker(ϕ) =
{
(r, s) ∈ Z2 : (r + 4Z, s + 12Z) = (0, 0)

}
= {(4a, 12b) : a, b ∈ Z} .

Thus, every element (4a, 12b) in the kernel can be written as a(4, 0) + b(0, 12) for some

a, b ∈ Z. Therefore, [(4, 0), (0, 12)] is an ordered generating set for ker(ϕ). The relation

matrix for this generating set is then the diagonal matrix(
4 0

0 12

)
.

Example 1.2. Let the Abelian group M have generators [m1, m2], and suppose that the

relation submodule K is generated by [(3, 0), (0, 6)]. Then the relation matrix is the diagonal

matrix (
3 0

0 6

)
.

Moreover, the relation submodule K relative to [m1, m2] is

K = {a(3, 0) + b(0, 6) : a, b ∈ Z}
= {(3a, 6b) : a, b ∈ Z} .

Furthermore, K is also the kernel of the map σ : Z2 → Z3⊕Z6 which is defined by σ(r, s) =

(r + 3Z, s + 6Z). Therefore, Z2/K ∼= Z3 ⊕ Z6. However, the meaning of K shows that

M ∼= Z2/K. Therefore, M ∼= Z3 ⊕ Z6. The consequence of this example is that if our

relation matrix is diagonal, then we can determine explicitly M as a direct sum of cyclic

modules.
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Example 1.3. Let the Abelian group M have generators [m1, m2], and suppose these gener-

ators satisfy the relations 2m1+4m2 = 0 and −2m1+6m2 = 0. Then the relation submodule

K contains k1 = (2, 4) and k2 = (−2, 6). If these generate K, the relation matrix is(
2 4

−2 6

)
.

Note that K is also generated by k1 and k1+k2. These pairs are (2, 4) and (0, 10). Therefore,

relative to this new generating set of K, the relation matrix is(
2 4

0 10

)
=

(
1 0

1 1

) (
2 4

−2 6

)
.

This new relation matrix is obtained from the original by adding the first row to the second.

On the other hand, we can instead use the generating set [n1 = m1 + 2m2, n2 = m2]. The

two relations can be rewritten as 2n1 = 0 and −2n1 + 10n2 = 0. Therefore, with respect to

this new generating set, the relation matrix is(
2 0

−2 10

)
=

(
2 4

−2 6

) (
1 −2

0 1

)
.

This matrix was obtained from the original by subtracting 2 times the first column from the

second column.

The behavior in this example is typical of what happens when we change generators or

relations.

Lemma 1.4. Let M be a finitely generated R-module, with ordered generating set [m1, . . . ,mn].

Suppose that the relation submodule K is generated by [k1, . . . , kp]. Let A be the p×n relation

matrix relative to these generators.

(1) Let P ∈ Mp(R) be an invertible matrix. If [l1, . . . , lp] are the rows of PA, then they

generate K, and so PA is the relation matrix relative to [m1, . . . ,mn] and [l1, . . . , lp].

(2) Let Q ∈ Mn(R) be an invertible matrix and write Q−1 = (qij). If m′
j is defined by

m′
j =

∑
i qijmi for 1 ≤ j ≤ n, then [m′

1, . . . ,m
′
n] is a generating set for M and the

rows of AQ generate the corresponding relation submodule. Therefore, AQ is a relation

matrix relative to [m′
1, . . . ,m

′
n].

(3) Let P and Q be p × p and n × n invertible matrices, respectively. If B = PAQ, then

B is the relation matrix relative to an appropriate ordered set of generators of M and

of the corresponding relation submodule.
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Proof. (1). The rows of A are the generators k1, . . . , kp of K. If P = (αij), then the rows of

PA are

l1 = α11k1 + · · ·+ α1pkp,

l2 = α21k1 + · · ·+ α2pkp,
...

lp = αp1k1 + · · ·+ αppkrp.

The li are then elements of K. Moreover, [l1, . . . , lp] is another generating set for K, since

we can recover the ki from the lj by using P−1: if P−1 =
(
βij

)
, then ki = βi1l1 + · · ·+ βiplp

for each i. As the rows of PA are then generators for K, this matrix is a relation matrix for

M .

(2). The m′
j are generators of M since each of the mi are linear combinations of the m′

j;

in fact, if Q = (αij), then mi =
∑n

j=1 αijm
′
j. By thinking about matrix multiplication, the

relations for the original generators can be written as a single matrix equation

A

 m1

...

mn

 =

 0
...

0

 .

This can be written as

(AQ) Q−1

 m1

...

mn

 =

 0
...

0

 ,

or

AQ

 m′
1

...

m′
n

 =

 0
...

0

 .

Therefore, the rows of AQ are relations relative to the new generating set [m′
1, . . . ,m

′
n].

The rows generate the relation submodule K ′ relative to the new generating set since if

r = (r1, . . . , rn) ∈ K ′, then
∑n

i=1 rim
′
i = 0. Writing this in terms of matrix multiplication,

we have

(r1, . . . , rn)Q−1

 m1

...

mn

 =

 0
...

0

 ,

and so the row matrix (r1, . . . , rn)Q−1 ∈ K. Thus, (r1, . . . , rn)Q−1 =
∑p

i=1 ciki for some ci ∈
R. Multiplying on the right by Q yields (r1, . . . , rn) =

∑p
i=1 ci (kiQ), a linear combination

of the rows of AQ. Thus, the rows of AQ do generate the relation submodule.

Finally, (3) simply combines (1) and (2).
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To get some feel for the relevance of this lemma, we recall the connection between row

and column operations and matrix multiplication. Consider the three types of row (resp.

column) operations:

1. multiplying a row (resp. column) by an invertible element of R;

2. interchanging two rows (resp. columns);

3. adding a multiple of one row (resp. column) to another.

Each of these operations has an inverse operation that undoes the given operation. For

example, if we multiply a row by a unit u ∈ R, then we can undo the operation by multiplying

the row by u−1. Similarly, if we add α times row i to row j to convert a matrix A to a new

matrix B, then we can undo this by adding −α times row i to row j of B to recover A.

If E is the matrix obtained by performing a row operation on the n × n identity matrix,

and if A is an n ×m matrix, then EA is the matrix obtained by performing the given row

operation on A. Similarly, if E ′ is the matrix obtained by performing a column operation

on the m × m identity matrix, then AE ′ is the matrix obtained by performing the given

column operation on A. We claim that E and E ′ are invertible matrices; to see why for E, if

G is the matrix obtained by performing the inverse row operation, then GE = I, since GEI

is the matrix obtained by first performing the row operation on I and then performing the

inverse operation. Thus, E is invertible.

As a consequence of this, if we start with a matrix A and perform a series of row and

column operations, the resulting matrix will have the form PAQ for some invertible matrices

P and Q; the matrix P will be a product of matrices corresponding to to elementary row

operations, and Q has a similar description.

Example 1.5. Consider the Abelian group M in the previous example, with generators

[m1, m2] and relations 2m1 + 4m2 = 0 and −2m1 + 6m2 = 0. So, relative to the ordered

generating sets [m1, m2] and [k1, k2] = [(2, 4), (−2, 6)], our relation matrix is(
2 4

−2 6

)
.

Subtracting 2 times column 1 from column 2 yields the new lists [m1, 2m1 + m2] and [k1, k2],

with relation matrix (
2 0

−2 10

)
.

Adding row 1 to row 2 yields (
2 0

0 10

)
,

which corresponds to [m1, 2m1 + m2] and [k1, k1 + k2]. From this description of M , we see

that M ∼= Z2 ⊕ Z10.
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We now see that having a diagonal relation matrix allows us to write the module as a

direct sum of cyclic modules.

Proposition 1.6. Suppose that A is a relation matrix for an R-module M . If there are

invertible matrices P and Q for which

PAQ =


a1 0 · · ·
0 a2 0 · · ·
...

. . .

an

0 · · ·


is a diagonal matrix, then M ∼= R/(a1)⊕ · · · ⊕R/(an).

Proof. The matrix PAQ above is the relation matrix for an ordered generating set [m1, . . . ,mn]

relative to a relation submodule generated by the rows of PAQ. If ϕ : Rn → M is the corre-

sponding homomorphism which sends (r1, . . . , rn) to
∑n

i=1 rimi, then the relation submodule

K is the kernel of ϕ. Thus, M ∼= Rn/K. However, K is also the kernel of the surjective

R-module homomorphism Rn → R/(a1) ⊕ · · · ⊕ R/(an) given by sending (r1, . . . , rn) to

(r1 + (a1), . . . , rn + (an)). Thus, R/(a1)⊕ · · · ⊕ R/(an) is also isomorphic to Rn/K. There-

fore, M ∼= R/(a1)⊕ · · · ⊕R/(an).

2 The Smith Normal Form

Let R be a principal ideal domain and let A be a p × n matrix with entries in R. We say

that A is in Smith normal form if there are nonzero a1, . . . , am ∈ R such that ai divides ai+1

for each i < m, and for which

A =



a1

. . .

am

0
. . .

0


.

We will prove that every matrix over R has a Smith normal form. In the proof we will

use a fact about principal ideal domains, stated in Walker: If (a1) ⊆ · · · (a2) ⊆ · · · is an

increasing sequence of ideals, then there is an n such that (an) = (an+1) = · · · . To see why

this is true, a short argument proves that the union of the (ai) is an ideal. Thus, this union is

of the form (b) for some b. Now, as b ∈ (b), we have b ∈
⋃∞

i=1(ai). Thus, for some n, we have

b ∈ (an). Therefore, as (an) ⊆ (b), we get (an) = (b). This forces (an) = (an+1) = · · · = (b).
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Theorem 2.1. If A is a matrix with entries in a principal ideal domain R, then there are

invertible matrices P and Q over R such that PAQ is in Smith normal form.

Proof. To make the proof more clear, we illustrate the idea for 2× 2 matrices. Start with a

matrix (
a b

c d

)
.

Let e = gcd(a, c), and write e = ax + cy for some x, y ∈ R. Write a = eα and c = eβ for

some α, β ∈ R. Then 1 = αx + βy. We have(
x y

−β α

)−1

=

(
α −y

β x

)
.

Thus, the matrix (
x 7

−β α

)
is invertible. Moreover,(

x y

−β α

) (
a b

c d

)
=

(
e bx + dy

−aβ + cα −bβ + dα

)
.

Since e divides −aβ + cα, a row operation then reduces this matrix to one of the form(
e u

0 v

)
.

A similar argument, applied to the first row instead of the first column, allows us to multiply

on the right by an invertible matrix and obtain a matrix to the form(
e1 0

∗ ∗

)
,

where e1 = gcd(e, u). Continuing this process, alternating between the first row and the first

column, will produce a sequence of elements e, e1, . . . such that e1 divides e, e2 divides e1,

and so on. In terms of ideals, this says (e) ⊆ (e1) ⊆ · · · . Because any increasing sequence of

principal ideals stabilizes in a principal ideal domain, we must arrive, in finitely many steps,

with a matrix of the form (
f 0

g h

)
or

(
f g

0 h

)
in which f divides g. One more row or column operation will then yield a matrix of the form(

f 0

0 k

)
.

Thus, by multiplying on the left and right by invertible matrices, we obtain a diagonal

matrix.
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Once we have reduced to a diagonal matrix(
a 0

0 b

)
,

to get the Smith normal form, let d = gcd(a, b). We may write d = ax+by for some x, y ∈ R.

Moreover, write a = dα and b = dβ for some α, β ∈ R. We then perform the following row

and column operations, yielding(
a 0

0 b

)
−→

(
a 0

ax b

)
−→

(
a 0

ax + by b

)
=

(
a 0

d b

)
−→

(
0 −bα

d b

)
−→

(
0 −bα

d 0

)
−→

(
d 0

0 −bα

)
,

a diagonal matrix in Smith normal form since d divides −bα.

As a consequence of the existence of a Smith normal form, we obtain the structure

theorem for finitely generated modules over a principal ideal domain.

Corollary 2.2. If M is a finitely generated module over a principal ideal domain R, then

there are elements a1, . . . , am ∈ R such that ai divides ai+1 for each i = 1, . . . ,m − 1, and

an integer t ≥ 0 such that M ∼= R/(a1)⊕ · · · ⊕R/(am)⊕Rt.

Proof. Let A be a relation matrix for M , and let B be its Smith normal form. Then

B = PAQ for some invertible matrices P, Q. If

B =



a1

. . .

am

0
. . .

0


,

Proposition 1.6 then shows that

M ∼= R/(a1)⊕ · · · ⊕R/(am)⊕R/(0)⊕ · · ·R/(0)

∼= R/(a1)⊕ · · · ⊕R/(am)⊕Rt

for some t ≥ 0.

Example 2.3. Let A be the Abelian group with generators m1, m2, m3 with relation sub-

module generated by (8, 4, 8), (4, 8, 4). Then the basic relations are

8m1 + 4m2 + 8m3 = 0,

4m1 + 8m2 + 4m3 = 0.
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The corresponding relation matrix is (
8 4 8

4 8 4

)
.

By performing row and column operations, we reduce this matrix to Smith normal form and

list the effect on the generators of the group and the corresponding relation subgroup.

matrix generators relations

(
8 4 8

4 8 4

)
m1, m2, m3

8m1 + 4m2 + 8m3 = 0,

4m1 + 8m2 + 4m3 = 0.(
0 −12 0

4 8 4

)
m1, m2, m3

−12m2 = 0,

4m1 + 8m2 + 4m3 = 0.(
0 −12 0

4 0 4

)
m1 + 2m2, m2, m3

−12m2 = 0

4(m1 + 2m2) + 4m3 = 0(
0 −12 0

4 0 0

)
m1 + 2m2 + m3, m2

−12m2 = 0

4(m1 + 2m2 + m3) = 0(
4 0 0

0 −12 0

)
m2, m1 + 2m2 + m3

4(m1 + 2m2 + m3) = 0

−12m2 = 0(
4 0 0

0 12 0

)
−m2, m1 + 2m2 + m3

4(m1 + 2m2 + m3) = 0

12(−m2) = 0

From the final matrix, we see that A ∼= Z4 ⊕ Z12.

We now specialize to the case of modules over the polynomial ring F [x] over a field F .

Let A ∈ Mn(F ) be a matrix, and consider the module (F n)A by making F n into an F [x]-

module via the scalar multiplication f(x) ·m = f(A)m. Then (F n)A is a finitely generated

module over the principal ideal domain F [x]. Let e1, . . . , en be the standard basis for F n.

Consider the F [x]-module homomorphism ϕ : F [x]n → F n which sends (f1(x), . . . , fn(x)) to∑n
i=1 fi(x)ei. We wish to determine generators for ker(ϕ) in order to apply the results of the

previous section. Referring to the beginning of the note, if A = (aij), then the generators ei

satisfy the relations

(x− a11)e1 − a21e2 − · · · − an1en = 0,

−a12e1 + (x− a22)e2 − · · · − an2en = 0,
...

−a1ne1 − · · ·+ (x− ann)en = 0.

Building a matrix from the coefficients yields
x− a11 −a21 · · · −an1

−a12 x− a22 · · · −an2

...
...

. . .
...

−a1n −a2n · · · x− ann

 = xI − AT .
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Thus, the rows of xI − AT are elements of the relation submodule of (F n)A relative to

[e1, . . . , en]. We will prove that xI − AT is a relation matrix for (F n)A relative to the

generating set [e1, . . . , en]. This amounts to proving that the rows of xI −AT generates the

relation submodule. Thus, finding the Smith normal form of xI−AT will show how to write

(F n)A as a direct sum of cyclic modules.

Let v1, . . . , vn be the rows of xI − AT , and let E1, . . . , En be the standard basis vectors

of F [x]n.

Lemma 2.4. Let
∑n

i=1 fi(x)Ei ∈ F [x]n. Then there are gi(x) ∈ F [x] and αi ∈ F such that∑n
i=1 fi(x)Ei =

∑n
i=1 gi(x)vi +

∑n
i=1 αiEi.

Proof. We prove this by inducting on the maximum m of the degrees of the fi(x). The case

m = 0 is trivial, since in this case each fi(x) is a constant polynomial, and then we can

choose gi(x) = 0 and αi = fi(x) ∈ F . Next, suppose that m > 0 and that the result holds

for vectors of polynomials whose maximum degree is < m. By the division algorithm, we

may write f1(x) = q1(x)(x− a11) + r1 for some q1(x) ∈ F [x] and r1 ∈ F . Then

(f1(x), 0, . . . , 0) = (q1(x)(x− a11) + r1, 0, . . . , 0)

= q1(x) (x− a11,−a21, . . . ,−an1) + (r1, q1(x)a21, . . . , q1(x)an1)

= q1(x)v1 + (r1, q1(x)a21, . . . , q1(x)an1).

Note that deg(q1(x)) = deg(f1(x))−1. Therefore, each entry of the second vector has degree

strictly less than deg(f1(x)). Repeating this idea for each fi(x) and subsequently rewriting

each fi(x)Ei, we see that

n∑
i=1

fi(x)Ei =
n∑

i=1

qi(x)vi +
n∑

i=1

hi(x)Ei

for some hi(x) ∈ F [x] with deg(hi(x)) < M . By induction, we may write
∑n

i=1 hi(x)Ei =∑n
i=1 ki(x)vi +

∑n
i=1 αiEi for some ki(x) ∈ F [x] and αi ∈ F . Then

n∑
i=1

fi(x)Ei =
n∑

i=1

(qi(x) + ki(x)vi +
n∑

i=1

αiEi,

which is of the desired form. Thus, the lemma follows by induction.

Proposition 2.5. If ϕ : F [x]n → (F n)A is the F [x]-module homomorphism defined by

ϕ(f1(x), . . . , fn(x)) =
∑n

i=1 fi(x)ei, then the kernel of ϕ is generated by the rows of xI−AT .

Proof. To determine the kernel of ϕ, let L be the submodule of F [x]n generated by the rows

v1, . . . , vn of xI−A. We have noted that each vi ∈ ker(ϕ); thus, L ⊆ ker(ϕ). For the reverse

inclusion, suppose that
∑n

i=1 fi(x)Ei ∈ ker(ϕ). By the lemma, we may write
∑n

i=1 fi(x)Ei =∑n
i=1 gi(x)vi +

∑n
i=1 αiEi for some gi(x) ∈ F [x] and αi ∈ F . Since each vi ∈ ker(ϕ),

we conclude that
∑n

i=1 αiEi ∈ ker(ϕ). However, this element maps to (α1, . . . , αn) ∈ F n.

Consequently, each αi = 0. Therefore,
∑n

i=1 fi(x)Ei =
∑n

i=1 gi(x)vi ∈ L.
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Corollary 2.6. Let A ∈ Mn(F ), and let (F n)A be the F [x]-module via the matrix A, as

above. If

B =



1
. . .

1

f1(x)
. . .

fm(x)


is the Smith normal form of A, then the (F n)A ∼= F [x]/(f1(x)) ⊕ · · · ⊕ F [x]/(fm(x)) as

F [x]-modules. Thus, the invariant factors of F n are f1(x), . . . , fm(x).

Proof. If B has the form above, then as F [x]/(1) is the zero module, we get the desired

decomposition of (F n)A.
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