I will present an example of an interaction between (non-classical) propositional logics and (classical) model theory which was made possible due to categorical logic.

I will investigate the existence of model-completions for equational theories arising from propositional logics (such as the theory of Heyting algebras and various kinds of theories related to propositional modal logic). The existence of model-completions turns out to be related to proof-theoretic facts concerning interpretability of second order propositional logic into ordinary propositional logic through the so-called ‘Pitts’ quantifiers’ or ‘bisimulation quantifiers’.

For an equational theory T (satisfying a certain assumption which is rather strong in general, but which is often satisfied in varieties of algebras arising from logic), we have a characterization of the existence of the model completion:

T admits a model completion iff T is an r-Heyting category,

where T is the opposite of the category $Alg(T)_{fp}$ of finitely presented T-algebras. In other words T admits a model completion iff the category T derived from T has some nice categorical structure.

The notion of r-Heyting category is obtained from the notion of Heyting category by replacing ‘subobject’ by ‘regular subobject’ everywhere in the definition.

Next I will use this characterization to two kinds of varieties of algebras: Heyting algebras and modal algebras. Usually it is not easy to decide directly whether T is an r-Heyting category. But, as this is a purely categorical
property, we can study it in any category equivalent to T. The strategy we adopt for an equational theory T can be summarized in the following four steps:

1. **Embedding.** Find an r-Heyting category E and an embedding
 \[\Phi_T : T \rightarrow E \]
 which is conservative, preserves finite limits and all the other r-Heyting category structure that exists in T.
 Conservativity ensures that the operations that can be performed in T and are preserved by Φ_T satisfy automatically any exactness properties that these operations satisfy in E. In particular, the operations of left (\exists_f) and right (\forall_f) adjoint to the pullback functors f^* (operating on regular subobjects) in T, if they exist, they automatically satisfy the Beck-Chevalley condition.
 In the applications the category E is (equivalent to) the category of sheaves on the opposite of the category of finite T-algebras with the canonical topology.

2. **Duality.** Identify the image of Φ_T in E, i.e. describe in a convenient way a subcategory M_T of E so that we have a factorization of Φ_T

 \[T \xrightarrow{\Phi_T} E \xrightarrow{\Psi_T} M_T \]

 with the first component being an equivalence of categories and Ψ_T being an inclusion.
 In the applications this point is slightly reversed. It is usually more natural to define a 'duality' functor in the opposite direction, i.e. $M_T \rightarrow T$.

3. **Combinatorial condition for existence of adjoints.** Now the existence of the adjoints is reduced to the verification whether the existing adjoints
in \(\mathcal{E} \) when applied to objects coming from \(T \) give objects coming from \(T \), as well.

In applications, with the help of an appropriate description of \(M_T \), this can be reduced to an equivalent condition of a combinatorial nature, expressed in terms of Ehrenfeucht-Fraissé games on finite Kripke models.

4. **Verification of combinatorial conditions.** Last, but not least, the combinatorial conditions should be verified to establish whether the adjoints do exist, if they do \(T \) is an r-Heyting category.

Using the above method I will describe the few equational theories of Heyting and modal \(S_4 \)-algebras that admit model completions.

References