Math 581 Assignment 11
due Friday 7 December

Instructions. In the problems about cyclotomic extensions of \(\mathbb{Q} \), feel free to use the fact that if \(K \) is the splitting field over \(\mathbb{Q} \) of \(x^n - 1 \), then \(\text{Gal}(K/\mathbb{Q}) \) is isomorphic to \((\mathbb{Z}_n)^* \), the group of units of the ring \(\mathbb{Z}_n \). We will write \(\mathbb{Q}_n \) for the field \(K \) below.

We also write \(\mathbb{F}_q \) for the unique, up to isomorphism field with \(q \) elements (when \(q \) is a power of a prime).

1. Let \(q \) be a power of a prime \(p \) and let \(n \) be a positive integer with \(\gcd(n,q) = 1 \). If \(K \) is the splitting field of \(x^n - 1 \) over \(\mathbb{F}_q \), prove that \(|K| = q^r \), where \(r \) is the order of \(q \) in \((\mathbb{Z}_n)^* \).
 (Hint: when does \(\mathbb{F}_{p^n} \subseteq \mathbb{F}_{p^m} \)?)

2. Let \(p \) be an odd prime. If \(F \) is a field with \(|F| = p^2 \), prove that \(x^2 - a \) splits over \(F \) for each \(a \in \mathbb{Z}_p \).

3. Determine all the subfields of \(\mathbb{Q}_{12} \).

4. Let \(n, m \) be positive integers with \(d = \gcd(n, m) \) and \(l = \text{lcm}(n, m) \).
 (a) If \(n \) divides \(m \), prove that \(\mathbb{Q}_n \subseteq \mathbb{Q}_m \).
 (b) Prove that \(\mathbb{Q}_n \mathbb{Q}_m = \mathbb{Q}_l \).
 (c) Prove that \(\mathbb{Q}_n \cap \mathbb{Q}_m = \mathbb{Q}_d \).
 (Hint for (c): prove or lookup the result that \(\phi(n)\phi(m) = \phi(l)\phi(d) \).)

5. Let \(V \) be the subgroup of \(S_4 \) consisting of the identity and the three elements which are products of two disjoint 2-cycles. For each adjacent pair \(H \subseteq K \) in the sequence \(\{e\} \subseteq V \subseteq A_4 \subseteq S_4 \), show that \(H \) is normal in \(K \) and \(K/H \) is Abelian. Furthermore, if \(G \) is a subgroup of \(S_4 \), prove that \(\{e\} \subseteq V \cap G \subseteq A_4 \cap G \subseteq G \) satisfies the same property as the original sequence of subgroups of \(S_4 \).

6. Let \(G \) be a finite group. Prove that there is a Galois extension \(K/F \) with \(\text{Gal}(K/F) \cong G \).

Optional Problems

1. Let \(F \) be a finite field, and let \(K \) and \(L \) be extensions of \(F \) of degree \(n \) and \(m \), respectively. Prove that \(KL \) has degree \(\text{lcm}(n, m) \) over \(F \) and \(K \cap L \) has degree \(\gcd(n, m) \) over \(F \).

2. If \(n \) is odd, prove that \(\mathbb{Q}_{2n} = \mathbb{Q}_n \).
3. Let \(c \in \mathbb{R} \). Prove that \(c \) is constructible by ruler and compass if and only if \(c \) is contained in a Galois extension \(K \) of \(\mathbb{Q} \) with \([K : \mathbb{Q}] \) a power of 2.

4. A Fermat number is an integer of the form \(2^{2^r} + 1 \) for some \(r \). Suppose that \(p \) is an odd prime such that a regular \(p \)-gon is constructible. Show that \(p \) is a Fermat number.

5. Solvability by real radicals. Suppose that \(f(x) \in \mathbb{Q}[x] \) has all real roots. If \(f \) is solvable by radicals, is \(f \) solvable by “real radicals”? That is, does there exist a chain of fields \(\mathbb{Q} = Q_0 \subseteq Q_1 \subseteq \cdots \subseteq Q_n \subseteq \mathbb{R} \) such that \(Q_n \) contains all the roots of \(f \), and \(Q_{i+1} = Q_i(\sqrt[n]{a_i}) \)? The answer is no, in general, and this problem gives a criterion for when \(f \) is solvable by real radicals. Use the following steps to prove the following statement: If \(f(x) \in \mathbb{Q}[x] \) is an irreducible polynomial with all real roots, and if \(N \) is the splitting field of \(f \) over \(\mathbb{Q} \), then \([N : \mathbb{Q}] \) is a power of 2 if and only if \(f \) is solvable by real radicals. You may assume the following nontrivial fact: If \(F \subseteq K \) are subfields of \(\mathbb{R} \) with \(K = F(a) \) such that \(a^n \in F \), and if \(L \) is an intermediate field of \(K/F \) Galois over \(F \), then \([L : F] \leq 2 \).

(a) If \([N : \mathbb{Q}] \) is not a power of 2, let \(p \) be an odd prime divisor of \([N : \mathbb{Q}] \). Let \(P \) be the subgroup of \(G = \text{Gal}(N/\mathbb{Q}) \) generated by all elements of order \(p \). Show that \(P \) is a normal subgroup of \(G \) and that \(P \neq \{\text{id}\} \).

(b) Let \(\alpha \) be a root of \(f \), and let \(T = \mathbb{Q}(\alpha) \). If \(H = \text{Gal}(N/T) \), show that \(P \) is not contained in \(H \). Conclude that there is an element \(\sigma \in G \) of order \(p \) not contained in \(H \).

(c) Let \(F = \mathcal{F}(\langle \sigma \rangle) \). Show that \(\alpha \notin F \). Let \(Q_i \) be in the chain above, and set \(F_i = FQ_i \). Show that there is an integer \(r > 0 \) with \(\alpha \notin F_{r-1} \) but \(\alpha \in F_r \). Show that \(F = F_{r-1} \cap N \) and \(N \subseteq F_r \).

(d) Let \(E = NF_{r-1} \). Then \(F_{r-1} \subseteq E \subseteq F_r \). Conclude from the assumption above and the theorem of natural irrationalities that \(p = [E : F_{r-1}] \leq 2 \), a contradiction.