Math 581 Assignment 2
due Friday 7 September

If V is an F-vector space, we will denote by $\text{Aut}_F(V)$ the group of all F-vector space automorphisms of V. It is a subgroup of $\text{Aut}(V)$, the group of all group automorphisms of $(V,+)$. If R is a ring, we'll denote by R^* the group of invertible elements of R, under multiplication.

Instructions. Do the first three problems and one of Problems 4 and 5.

1. Let $\varphi : G \to H$ be a homomorphism.

 (a) Prove that $\varphi(e_G) = e_H$ and, for each $a \in G$, that $\varphi(a^{-1}) = \varphi(a)^{-1}$.

 (b) If φ is surjective and G is Abelian, prove that H is Abelian.

2. Let G, H be groups. Prove that $G \times H \cong H \times G$.

3. Let $C = \langle a \rangle$ be a cyclic group of order $n < \infty$.

 (a) Define $\sigma_i : C \to C$ by $\sigma_i(x) = x^i$. Prove that σ_i is a homomorphism, and is an automorphism if and only if $\gcd(i,n) = 1$.

 (b) Prove that $\sigma_i = \sigma_j$ if and only if $i \equiv j \pmod{n}$.

 (c) Prove that $\text{Aut}(C) = \{\sigma_i : i \in \mathbb{Z}, \gcd(i,n) = 1\}$.

 (d) Prove that $\sigma_i \circ \sigma_j = \sigma_{ij}$. Conclude that $\text{Aut}(C) \cong (\mathbb{Z}_n)^*$.

4. Let S be a set with $|S| \geq 3$. Prove that $Z(\text{Perm}(S)) = \{e\}$.

5. Prove that \mathbb{R}^* is not isomorphic to \mathbb{C}^*.

Optional Problems

1. Prove that $\text{Aut}_\mathbb{R}(\mathbb{R}) = \{\sigma \in \text{Aut}(\mathbb{R}) : \sigma \text{ is continuous}\}$ and that $\text{Aut}_\mathbb{R}(\mathbb{R}) \neq \text{Aut}(\mathbb{R})$.

2. For $a \in \mathbb{Q}$ with $a \neq 0$, define $L_a : \mathbb{Q} \to \mathbb{Q}$ by $L_a(x) = ax$. Prove that $\text{Aut}(\mathbb{Q}) = \{L_a : a \in \mathbb{Q}^*\}$ and that $\text{Aut}(\mathbb{Q}) \cong \mathbb{Q}^*$.

3. Prove that $(\mathbb{R}, +) \cong (\mathbb{C}, +)$.

 (Hint: Vector space argument.)