Math 581 Assignment 8
due Friday 2 November

Recall that K/F is a normal extension if K is the splitting field over F of some polynomial in $F[x]$. This terminology is used in Problem 2.

1. Let K/F be a field extension and let $f(x), g(x) \in F[x]$. Prove that the gcd of $f(x), g(x)$ in $F[x]$ is the same as the gcd of $f(x), g(x)$ in $K[x]$. Conclude that the gcd of $f(x), g(x)$ is not 1 if and only if $f(x), g(x)$ have a common root in some extension field of F.

2. If $F \subseteq L \subseteq K$ is a tower of fields with K/F a normal extension, prove that K/L is a normal extension. Give an example of K/F normal with L a field with $F \subseteq L \subseteq K$ and L/F not normal.

3. Let $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$, where $\omega = e^{2\pi i/3}$. Recall that K is the splitting field of $x^3 - 2$ over \mathbb{Q}. Prove that there is an automorphism σ of K with $\sigma|_{\mathbb{Q}(\sqrt[3]{2})} = \text{id}$ and $\sigma(\sqrt[3]{2}) = \sqrt[3]{2} \omega$. Also prove that there is an automorphism τ of K with $\tau|_{\mathbb{Q}(\sqrt[3]{2})} = \text{id}$ and $\tau(\omega) = \omega^2$. (Hint: Recall that $[K : \mathbb{Q}] = 6$. Use this to find the minimal polynomial of ω over $\mathbb{Q}(\sqrt[3]{2})$ and the minimal polynomial of $\sqrt[3]{2}$ over $\mathbb{Q}(\omega)$.)

4. Let K be a splitting field over F of some polynomial $f(x) \in F[x]$. If $p(x) \in F[x]$ is irreducible and has a root in K, prove that $p(x)$ splits over K. (Hint: Use the Isomorphism Extension Theorem.)

Optional Problems

1. Let F be a field of characteristic p. Let $F^p = \{a^p : a \in F\}$.

 (a) Prove that F^p is a subfield of F.

 (b) If F is a finite field, prove that $F^p = F$.

 (c) Prove that each finite extension of F is separable if and only if $F^p = F$.

2. Let F be a field of characteristic $p > 0$, and suppose $K = F(a, b)$ be a field extension of F with $a^p, b^p \in F$. Prove that if $c \in K$, then $c^p \in F$, and conclude that $[F(c) : F] \leq p$.

3. Let $K = \mathbb{Z}_p(x, y)$, the rational function field in two variables, and let $F = \mathbb{Z}_p(x^p, y^p)$. Prove that $[K : F] = p^2$ and that $K \neq F(c)$ for any $c \in K$.

1