Zorn’s Lemma and Applications to Algebra

Mathematics 581

There are several existence results in algebra that are proved in a similar manner. In this note we prove two such results (1) If R is a ring with 1, then R has a maximal ideal, and (2) Every vector space has a basis. In order to prove these results, we will use a statement equivalent to the axiom of choice. While we won’t use it, the **axiom of choice** states that if $\{A_i : i \in I\}$ is a family of nonempty sets, then there is a function $f : I \rightarrow \bigcup_{i \in I} A_i$ for which $f(i) \in A_i$ for each i. The meaning of the name is that we are “choosing” an element a_i from each A_i, and defining f by $f(i) = a_i$. The axiom of choice is named thusly because it is an axiom of set theory.

In this note we will use **Zorn’s lemma**, a theorem equivalent to the axiom of choice. To state it, we need some preliminary notations. If X is a set, then a relation \leq on X is said to be a **partial order** if the relation is reflexive, transitive, and anti-symmetric; this latter condition means if $a \leq b$ and $b \leq a$, then $a = b$. We will refer to the pair (X, \leq) as a **partially ordered set**, or, for short, a **poset**.

Example 1. Consider the power set of a set T. By defining $A \leq B$ if A and B are subsets of S with $A \subseteq B$, then the power set is a poset with this relation. It is quite possible to have subsets A, B with $A \nsubseteq B$ and $B \nsubseteq A$.

Example 2. The set \mathbb{R} with its usual order is a poset. Note that if $a, b \in \mathbb{R}$, then either $a \leq b$ or $b \leq a$.

If (X, \leq) is a poset and $a, b \in X$, we need not have either $a \leq b$ or $b \leq a$. However, if for each pair $a, b \in X$, either $a \leq b$ or $b \leq a$, then we call (X, \leq) a **chain**. If C is a subset of X which, when restricting the partial order to C, is a chain, then we say C is a chain in X. The set of real numbers with its usual ordering is a chain.

Let (X, \leq) be a poset. If A is a subset of X, then $x \in X$ is said to be an **upper bound** for A if $a \leq x$ for each $a \in A$. Note that we are not assuming that $x \in A$. A **maximal element** of A is an element $b \in A$ such that if $a \in A$ with $b \leq a$, then $a = b$. In other words, there is no properly larger element in A than b. This does not say that $a \leq b$ for all $a \in A$ (such an element would be called a maximum element).

Example 3. Let X be the power set of $\{1, 2, 3, 4\}$ with the partial order of inclusion. If $A = \{\emptyset, \{1, 2\}, \{2, 3\}, \{1, 2, 4\}\}$, then only $\{1, 2, 3, 4\}$ is an upper bound for A. However,
\{2,3\} and \{1,2,4\} are maximal elements of \(A\). The subposet \(\emptyset, \{1\}, \{1,3\}\) is a chain in \(X\).

We can now state Zorn’s lemma.

Theorem 4 (Zorn’s Lemma). Let \((X, \leq)\) be a nonempty poset. If each chain \(C\) in \(X\) has an upper bound in \(X\), then \(X\) has a maximal element.

To apply Zorn’s lemma we only need to know that each chain has an upper bound in \(X\); the upper bound need not be in the chain. The way we apply Zorn’s lemma in this note are typical applications of this result in algebra.

Theorem 5. Let \(R \neq \{0\}\) be a ring with 1. Then \(R\) has a maximal ideal.

Proof. Let \(\mathcal{T}\) be the set of all proper ideals of \(R\). Then \(\mathcal{T}\) is nonempty since \((0) \in \mathcal{T}\). We partially order \(\mathcal{T}\) by inclusion. In other words, we define \(I \leq J\) if \(I \subseteq J\). It is trivial to check that \((\mathcal{T}, \subseteq)\) is a poset. To apply Zorn’s lemma, let \(C = \{I_\alpha : \alpha \in \Gamma\}\) be a chain in \(S\), indexed by some set \(\Gamma\). We must prove that \(C\) has an upper bound in \(\mathcal{T}\). Let \(I = \bigcup_{\alpha \in \Gamma} I_\alpha\), the union of all the \(I_\alpha\). We claim that \(I\) is a proper ideal of \(R\). To see that \(I\) is an ideal, first we show that \(I\) is a subgroup of \((R,+)\). Let \(a, b \in I\). Then there are \(\alpha, \beta \in \Gamma\) with \(a \in I_\alpha\) and \(b \in I_\beta\). Since \(C\) is a chain, either \(I_\alpha \subseteq I_\beta\) or \(I_\beta \subseteq I_\alpha\); without loss of generality we assume that \(I_\alpha \subseteq I_\beta\). Then \(a, b \in I_\beta\). Since \(I_\beta\) is an ideal of \(R\), we have \(a - b \in I_\beta \subseteq I\). Therefore, \(I\) is a subgroup of \((R,+)\). Next, let \(a \in I\) and \(r \in R\). Then \(a \in I_\alpha\) for some \(\alpha\). Since \(I_\alpha\) is an ideal of \(R\), both \(ra\) and \(ar\) are elements of \(I_\alpha\). Thus, both are elements of \(I\). This proves that \(I\) is an ideal of \(R\). To see that it is a proper ideal, note that \(1 \notin I_\alpha\) for each \(\alpha\) since each \(I_\alpha \in \mathcal{T}\) is a proper ideal of \(R\). Therefore, \(1 \notin I\) by definition of \(I\), so \(I\) is indeed proper. It is an upper bound for the chain since \(I_\alpha \subseteq I\) for each \(\alpha \in \Gamma\). So, the hypotheses of Zorn’s lemma applies. There is then a maximal element \(M\) of \(\mathcal{T}\). We claim that \(M\) is a maximal ideal of \(R\). To prove this, suppose that \(M \subseteq J \subseteq R\) with \(J\) an ideal of \(R\). If \(J\) is proper, then \(J \in \mathcal{T}\). Maximality of \(M\) then forces \(M = J\). Thus, either \(J = M\) or \(J = R\). \(\square\)

Let \(R\) be a commutative ring. A subset \(S\) of \(R\) is said to be *multiplicatively closed* if for each \(s, t \in S\) we have \(st \in S\).

Theorem 6. Let \(S\) be a multiplicatively closed subset of a commutative ring \(R\) such that \(0 \notin S\). Then there is an ideal \(P\) maximal with respect to the condition \(P \cap S = \emptyset\).

Proof. Let \(\mathcal{T}\) be the collection of all ideals \(I\) of \(R\) with \(I \cap S = \emptyset\). Then \(\mathcal{T}\) is nonempty since \((0) \in \mathcal{T}\). We order \(\mathcal{T}\) by set inclusion. To use Zorn, we let \(\mathcal{C}\) be a chain in \(\mathcal{T}\). As in the proof of the existence of maximal ideals, we see that the union \(I\) of the ideals in \(\mathcal{C}\) is again an ideal. Furthermore, if \(I \cap S \neq \emptyset\), take \(s \in I \cap S\). Then there is some \(J \in \mathcal{C}\) with \(s \in J\) since \(I\) is the union of the ideals in \(\mathcal{C}\). But then \(J \cap S \neq \emptyset\), which is a contradiction since \(J \in \mathcal{T}\). Consequently, \(I \cap S = \emptyset\), so \(I \in \mathcal{T}\). Thus, by Zorn’s lemma, \(\mathcal{T}\) has a maximal element \(P\). This ideal satisfies the statement of theorem. \(\square\)
The existence of ideals maximal with respect to missing a multiplicatively closed set is an important fact in commutative ring theory, which we will see as we get deeper into the study of rings. One of the significant facts about these ideals is that they are prime, as we now prove.

Theorem 7. Let S be a multiplicatively closed subset of a commutative ring R such that $0 \notin S$. If P is an ideal maximal with respect to the condition $P \cap S = \emptyset$, then P is a prime ideal of R.

Proof. Let $a, b \in R$ with $ab \in P$. If neither $a, b \in P$, then $P + aR$ and $P + bR$ are ideals of R which are properly larger than S. Maximality of P then implies there are $s, t \in S$ with $s \in P + aR$ and $t \in P + bR$. Then we may write $s = x + au$ and $t = y + bv$ for some $x, y \in P$ and $u, v \in R$. Then

$$st = (x + au)(y + bv) = xy + xbv + yau + abuv.$$

We have $x, y \in P$, so the first three terms are in P, and the fourth term is in P since $ab \in P$. Thus, $st \in P$. However, $st \in S$ since $s, t \in S$ and S is multiplicatively closed. This means $P \cap S \neq \emptyset$, a contradiction. Thus, either $a \in P$ or $b \in P$, which proves that P is a prime ideal of R. \qed

We next prove the existence of a basis for each vector space. A subset S of V is **linearly independent** if any finite subset $\{v_1, \ldots, v_n\}$ of S is linearly independent. In other words, S is linearly independent if for each $n \in \mathbb{N}$ and $v_1, \ldots, v_n \in S$, the only solution to $\sum_{i=1}^{n} x_i v_i = 0$ is $x_1 = \cdots = x_n = 0$. Recall that S spans V if V is the only subspace which contains S. What this means is that each $v \in V$ is a linear combination of finitely many elements of S. A **basis** of V is a subset which is both linearly independent and spans V. A nice characterization is that a subset S of V is a basis of V if every element of V is uniquely expressible as a linear combination of finitely many elements of V.

By carefully thinking about the definitions, we see that \emptyset is a basis of the zero vector space $\{0\}$; more generally, \emptyset is a linearly independent subset of any vector space. To prove the theorem, we need the following lemma.

Lemma 8. Let V be a vector space. If B is a linearly independent subset of V, and if $v \in V$ is not in the span of B, then $B \cup \{v\}$ is also linearly independent.

Proof. To prove that $B \cup \{v\}$ is linearly independent, we must show that each finite subset is linearly independent. Take $\{v_1, \ldots, v_n\} \subseteq B \cup \{v\}$. We have two cases. First, if $v \notin \{v_1, \ldots, v_n\}$, then $\{v_1, \ldots, v_n\} \subseteq B$, so it is linearly independent since B is linearly independent. If, on the other hand, $v \in \{v_1, \ldots, v_n\}$, then, after changing notation if necessary, we set $v_1 = v$. Suppose that $\sum_{i=1}^{n} \alpha_i v_i = 0$. If $\alpha_1 \neq 0$, then $v_1 = \sum_{i=2}^{n} -\alpha_i \alpha_1^{-1} v_i$, which says $v = v_1$ is in the span of B. Since this is false, $\alpha_1 = 0$. Then $\sum_{i=2}^{n} \alpha_i v_i = 0$, which by the linear independence of B, noting that $\{v_2, \ldots, v_n\} \subseteq B$, implies that $\alpha_2 = \cdots = \alpha_n$. Thus, all $\alpha_i = 0$, proving that $\{v_1, \ldots, v_n\}$ is linearly independent. \qed
Theorem 9. Every vector space has a basis.

Proof. Let V be an F-vector space, and let T be the set of linearly independent subsets of V. The set T is nonempty since $\emptyset \in T$. We partially order T by inclusion. Let $C = \{A_\alpha : \alpha \in \Gamma\}$ be a chain in T, and set $A = \bigcup_{\alpha \in \Gamma} A_\alpha$. We claim that A is an upper bound in T of the chain C. We must prove that A is linearly independent; that it is an upper bound of C then follows immediately by the definition of A. So, suppose that $v_1, \ldots, v_n \in A$ and that $\sum_{i=1}^{n} b_i v_i = 0$ for some $b_i \in F$. Each v_i is an element of some $A_{\alpha_i} \in C$. Because C is a chain, there is some A_{α_j} containing each $A_{\alpha_1}, \ldots, A_{\alpha_n}$. Then $\{v_1, \ldots, v_n\}$ is a subset of A_{α_j}, a linearly independent subset of V. This forces $b_1 = \cdots = b_n = 0$. Therefore, A is indeed linearly independent. So, by Zorn’s lemma, T has a maximal element B. We claim that B is a basis for V. It is linearly independent by the fact that $B \in T$. To prove B spans V, let $v \in V$. If v is not in the span of B, then $B \cup \{v\}$ is linearly independent by the lemma. However, this would contradict the maximality of B. Therefore, v is in the span of B. This proves that V is the span of B, and so B is a basis of V.

We can modify the argument above to get some extensions of this theorem.

Proposition 10. Let V be an F-vector space.

1. Let A be a linearly independent subset of V. Then A is contained in a basis of V.

2. Let S be a spanning set of V. Then S contains a basis of V.

3. Let $A \subseteq S$ be subsets of V such that A is linearly independent and S spans V. Then there is a basis B of V with $A \subseteq B \subseteq S$.

Proof. We will prove (3), the strongest of the three. Statement (1) follows from (3) by setting $S = V$, and (2) follows from (3) by setting $A = \emptyset$. To prove (3), let

$$T = \{D : A \subseteq D \subseteq S, \ D \text{ is linearly independent}\}.$$

Then T is nonempty since $A \in T$. Just as in the proof of the previous theorem, Zorn’s lemma applies to T. Therefore, there is a maximal element B of T. Then $A \subseteq B \subseteq S$ by definition of T. We claim that B is a basis of V. That B is linearly independent follows from $B \in T$. To see that B spans V, take $v \in V$. Then $v = \alpha_1 w_1 + \cdots + \alpha_n w_n$ for some $\alpha_i \in F$ and $w_i \in S$; we are using that S spans V to do this. For each i we see that w_i is in the span of B, since by the lemma $B \cup \{w_i\}$ would be linearly independent, which is false since then $B \cup \{w_i\} \in T$. Thus, each w_i is in the span of B. Therefore, v is also in the span of B. This proves that B spans V.

Now that we know every vector space has a basis, we can ask the question about the size of different bases. Since bases may be infinite, we have to be careful about what we mean. If S and T are sets, then we say that S and T have the same cardinality if there is a bijection between S and T. If S and T are finite, this is equivalent to saying S and T have the same number of elements. While we won’t prove it here, it is true that if B and B' are bases for a vector space, then B and B' have the same cardinality.