Math 582 Assignment 9
due Friday May 3

Instructions. Throughout this assignment A will be a Dedekind domain. Work Problems 1, 2 and two others.

1. If I and J are nonzero ideals of A, we say I divides J if there is an ideal K with $J = IK$. Prove that I divides J if and only if $J \subseteq I$.

2. Let P_1, \ldots, P_n be maximal ideals of A, and let $I = P_1^{e_1} \cdots P_n^{e_n}$ and $J = P_1^{f_1} \cdots P_n^{f_n}$ with $0 \leq e_i, f_i$ for each i. Prove that
 \begin{enumerate}[(a)]

 \item $I + J = P_1^{g_1} \cdots P_n^{g_n}$, where $g_i = \min\{e_i, f_i\}$ for each i.

 \item $I \cap J = P_1^{h_1} \cdots P_n^{h_n}$, where $h_i = \max\{e_i, f_i\}$ for each i.
 \end{enumerate}

3. (a) Let R be a commutative ring. If M, N are distinct maximal ideals of R and if $n, m \in \mathbb{N}$, prove that $M^n + N^m = R$.

 (b) Let M_1, \ldots, M_n be maximal ideals of A, and let $f_i \in \mathbb{N}$. Pick $x_i \in M_i^{f_i} - M_i^{f_i+1}$. Show that the Chinese Remainder Theorem implies there is $a \in A$ with $a + M_i^{f_i+1} = x_i + M_i^{f_i+1}$ for each i. Furthermore, prove that $(a) = M_1^{f_1} \cdots M_n^{f_n} K$ for some ideal K whose prime factorization does not involve any of the M_i.

4. If I is a nonzero ideal of A, show that every ideal of A/I is principal. Conclude that any ideal in a Dedekind domain can be generated by two elements.

5. If $S \subseteq A$ is multiplicatively closed with $0 \notin S$, prove that A_S is a Dedekind domain, provided that A_S is not equal to the quotient field of A.

6. If $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in A[x]$, the content of f is the ideal (a_0, \ldots, a_n). Prove the following generalization of Gauss’ lemma, that $c(fg) = c(f)c(g)$.

7. Prove that A is a UFD if and only if A is a PID.

8. Let $A = \mathbb{Z}[\sqrt{-5}]$. By a previous HW problem A is the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{-5})$, so it is a Dedekind domain. Note that $2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ in A. Let $P = (2, 1 + \sqrt{-5})$, $Q_1 = (3, 1 + \sqrt{-5})$, and $Q_2 = (3, 1 - \sqrt{-5})$.

 (a) Prove that P, Q_1, Q_2 are prime ideals of A.

 (b) Prove that $(2) = P^2$.

 (c) Prove that $(3) = Q_1Q_2$.

 (d) Prove that $(1 + \sqrt{-5}) = PQ_1$ and $(1 - \sqrt{-5}) = PQ_2$.

1