Math 582 Final Exam
8 May 2013

Instructions. Recall that if \(\varphi : A \to B \) is a ring homomorphism and \(P \) is an \(B \)-module, then \(P \) is an \(A \)-module via \(r \cdot p = \varphi(r)p \). If \(M \) is an \(A \)-module, then \(M \otimes_A B \) is an \(B \)-module via \(s \cdot (m \otimes t) = m \otimes st \). More generally, if \(M \) is an \(A \)-module and \(P \) is an \(B \)-module, then \(M \otimes_A P \) is an \(B \)-module via \(s \cdot (m \otimes p) = m \otimes sp \).

1. Let \(A \) be a Dedekind domain with quotient field \(F \).

 (a) If \(J_1 \supseteq J_2 \) are ideals of \(A \), prove that \((A : J_1) \subseteq (A : J_2) \).

 (b) If \(J \) is a fractional ideal, prove that \(A \) satisfies the ACC on fractional ideals contained in \(J \). That is, if \(I_1 \subseteq I_2 \subseteq \cdots \) is a chain of fractional ideals with \(I_n \subseteq J \) for each \(n \), prove there is an \(m \) with \(I_m = I_{m+1} = \cdots \).

 (c) If \(I \) is a nonzero ideal of \(A \), prove that \(A/I \) is an Artinian ring.

2. Let \(\varphi : A \to B \) be a ring homomorphism between commutative rings. If \(M \) is a projective \(A \)-module, prove that \(M \otimes_A B \) is projective as an \(B \)-module.

3. Let \(A \) be a commutative ring and let \(a_1, \ldots, a_n \in A \).

 (a) Suppose that \((a_1, \ldots, a_n) = A \). Prove that \((a_1^r, \ldots, a_n^r) = A \) for each \(r \geq 1 \).

 (b) Suppose that \((a_1, \ldots, a_n) = A \). Prove that \(A \) is a Noetherian ring if and only if each \(A_{a_i} \) is a Noetherian ring, where \(A_{a_i} \) is the localization of \(A \) at \(\{a_i^n : n \geq 0\} \).

4. Let \(A \subseteq B \) be commutative rings. Let \(M \) be an \(A \)-module and let \(N, P \) be \(B \)-modules. You may use without proof that \((M \otimes_A N) \otimes_B P \cong M \otimes_A (N \otimes_B P) \) as \(B \)-modules.

 (a) If \(M \) is an \(A \)-module and \(P \) is an \(B \)-module, prove that \(M \otimes_A P \cong (M \otimes_A B) \otimes_B P \) as \(B \)-modules.

 (b) If \(M \) is flat as an \(A \)-module, prove that \(M \otimes_A B \) is flat as a \(B \)-module.