This assignment is due at the beginning of class on Friday 9 October. Solve all problems and give complete proofs and explanations. You may use any books you would like, but you must cite your sources. Each group will hand in a single report, which must be typed, though the mathematics may be written by hand.

In the problems below \(F \) is a field and all vector spaces below are \(F \)-vector spaces, and are not assumed finite-dimensional.

1. Let \(U_1, \ldots, U_n \) be subspaces of a vector space \(V \). We call the sum \(U_1 + \cdots + U_n \) direct if each element of the sum has a unique representation as \(u_1 + \cdots + u_n \) with each \(u_i \in U_i \). When the sum is direct, we denote it by \(U_1 \oplus \cdots \oplus U_n \).

 (a) If \(U_1 \cap U_2 = \{0\} \), prove that \(U_1 + U_2 \) is a direct sum.

 (b) Prove that \(U_1 + \cdots + U_n \) is direct if and only if \(U_j \cap \sum_{i \neq j} U_i = \{0\} \) for each \(j = 1 \ldots, n \).

2. Let \(V \) be a vector space.

 (a) Let \(U \) be a subspace of \(V \). Prove that there is a subspace \(W \) of \(V \) with \(V = U \oplus W \).

 (b) Let \(e : V \to V \) be a linear transformation with \(e^2 = e \). Prove that \(V = \ker(T) \oplus \text{im}(T) \).

3. If \(B \) is a basis of a vector space \(V \), prove that \(\text{hom}_F(V,W) \cong \text{map}(B,W) \). Use this to prove that \(V^* \cong \text{map}(B,F) \).

4. Let \(U,W \) be \(F \)-vector spaces and let \(T : U \to W \) be a linear transformation.

 (a) Suppose that \(U \) is a subspace of a vector space \(V \). Prove that there is a linear transformation \(S : V \to W \) with \(S|_U = T \).

 (b) With \(U \) an arbitrary vector space, if \(\sigma : U \to V \) is a 1-1 linear transformation, prove that there is a linear transformation \(S : V \to W \) with \(S \circ \sigma = T \).

 (c) Prove or disprove the previous statement when \(\sigma \) is assumed to be linear, but not necessarily 1-1.
5. Let V, W be vector spaces. If $T \in \text{hom}_F(V, W)$, recall the definition $T^t : W^* \to V^*$ by $T^t(\sigma) = \sigma \circ T$.

(a) if $T : V \to W$ and $S : W \to U$ are both linear, prove that $(S \circ T)^t = T^t \circ S^t$.

(b) Prove that $\ker(T^t) = (\text{im}(T))^0$.

(c) Prove that $\text{im}(T^t) = (\ker(T))^0$.