1.3 Long Exact Sequences

We can now state and prove perhaps the most fundamental fact of homology, the long exact sequence arising from a short exact sequence of complexes. This long exact sequence will, among other things, help us to compute homology groups.

Theorem Let \(0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0 \) be a short exact sequence of complexes in an Abelian category. Then there are natural maps \(d_n : H_n(C) \to H_{n-1}(A) \) such that

\[
\cdots \to H_{n+1}(C) \xrightarrow{d_{n+1}} H_n(A) \xrightarrow{d_n} H_n(B) \xrightarrow{\partial_n} H_n(C) \xrightarrow{d_n} H_{n-1}(A) \to \cdots \text{ is exact.}
\]

Similarly, if the sequence above is one of cochain complexes, then there is a natural hom \(d^n : H^n(C) \to H^{n-1}(A) \) such that the following is exact

\[
\cdots \to H^{n+1}(C) \xrightarrow{d^{n+1}} H^n(A) \xrightarrow{d^n} H^n(B) \xrightarrow{\partial^n} H^n(C) \xrightarrow{d^n} H^{n-1}(A) \to \cdots
\]

The main tool to prove the theorem is the **snake lemma**.

Snake Lemma Given the diagram with exact rows

\[
\begin{array}{ccc}
A' & \xrightarrow{f'} & B' & \xrightarrow{g'} & C' & \to 0 \\
\downarrow f & & \downarrow g & & \downarrow h & \\
0 & \to A & \xrightarrow{f} & B & \xrightarrow{g} & C
\end{array}
\]

there is an exact sequence

\[
\ker(f') \xrightarrow{\delta} \ker(g) \xrightarrow{\delta} \ker(h) \xrightarrow{\delta} \text{coker}(f') \xrightarrow{\delta} \text{coker}(g) \xrightarrow{\delta} \text{coker}(h).
\]

If \(f' \) is monic, then so is \(\text{ker}(f') \to \text{ker}(g) \), and if \(f \) is monic, so is \(\delta \).
proof we give a (partial) proof in the case of modules: the text on p. 12 indicates how to prove it in general.

The map \(S : \ker(h) \to \text{coker}(f) \) is given as follows. Let \(c \in \ker(h) \), and take \(b \in B' \) with \(f'(b) = c \). Then \(g(b) \in \ker(f) \) by commutativity, so \(g(b) = a(a) \) for some \(a \in A \). We then set \(S(c) = a + \text{im}(f) \in \text{coker}(f) \). This is well defined since if \(b_0 \in B' \) with \(f'(b_0) = c \), then \(\ker(f') \), so \(d - b_0 \in \ker(f) \), so \(c = d + b \in \ker(f) \) for some \(c \in A'. \) If \(g(b_0) = a(a) \), then \(g(b_0 - a) = d' - a \) and \(g(a - b_0) = g(a) - d' = d' \). Injectivity of \(a \) gives \(b_0 - a \in \text{im}(f) \), so \(a + \text{im}(f) = b_0 + \text{im}(f) \in \text{coker}(f) \).

The maps \(\ker(f) \to \ker(g) \) and \(\ker(g) \to \ker(h) \) are restrictions of \(d' \) and \(f' \). The map \(\text{coker}(f) \to \text{coker}(g) \) is given by \(a + \text{im}(f) \mapsto d'(a) + \text{im}(g) \). The map \(\text{coker}(g) \to \text{coker}(h) \) is given similarly.

Exactness at \(B' \): The composition \(\ker(f) \to \ker(g) \to \ker(h) \) is clearly 0. Take \(b \in \ker(g) \) with \(f'(b) = 0 \). Then \(\ker(f) = \ker(h) \) for some \(c \in A' \). Also, \(S(c) = g(b) = d' \), so \(f(a) = 0 \) as \(x \) is injective. Thus, \(a \in \ker(f) \).

Exactness at \(\ker(h) \): Let \(b \in \ker(h) \). To calculate \(S(f'(b)) \), we take \(b \) as the lift of \(f'(b) \). Since \(g(b) = 0 \), we have \(a = 0 \), so \(\ker(h) \). Next, take \(c \in \ker(h) \) with \(g(c) = 0 \). Write \(c = f'(b) \), \(g(b) = d' h \). Then \(a \in \text{im}(f) \); say \(a = f(b) \). Then \(g(b) = d' h = g(f(b)) \), so \(0 = b - f(b) \in \ker(g) \). Since \(f'(b) = f'(b) = c \), we are done.

Exactness at \(\text{coker}(f) \): Let \(c \in \ker(h) \). Let \(c = f'(b) \), \(g(b) = d' h \) with \(a \in A \). Then \(S(c) = a + \text{im}(f) \). Then \(S(c) = a + \text{im}(f) = g(b) + \text{im}(g) = 0 \). Conversely, \(\ker(f) \to \ker(g) \to \ker(h) \), then \(f(a) = g(b) \) for some \(c \). Let \(a = f(b) \). Then \(\ker(f) \to \ker(g) \to \ker(h) \), then \(f(a) = g(b) \), so \(b_0 - a \in \text{im}(f) \). Then \(a + \text{im}(f) = b_0 + \text{im}(f) \in \text{coker}(f) \).
O map: \(A, B \rightarrow O \), \(O \rightarrow B \) unique maps. Composition is the \(O \) map.

\[
\begin{align*}
A & \xrightarrow{f} B & \xrightarrow{g} C
\end{align*}
\]

\(e \rightarrow \text{im} f \)

\(\text{ker} \)

\(e = \text{gof} = \text{gocoe} \). Since \(e \) is epic, \(\text{goc} = O \). Thus, there is a unique map \(\lambda : \text{im} f \rightarrow \text{ker}g \) with \(\lambda = \text{jod} \). We say the sequence is exact at \(B \) if \(\lambda \) is an isomorphism.

Given \(A \xrightarrow{f} B \), we have

\[
\begin{align*}
A & \xrightarrow{f} B & \xrightarrow{\text{coker}(f)} \text{coker}(f) \\
\uparrow & & \uparrow \\
\text{im} f & = \text{ker}(\text{coker}(f))
\end{align*}
\]

Since \(\text{prof} = 0 \), there is a unique map \(e : A \rightarrow \text{im}(f) \) with \(f = \text{loe} \).

The map \(\lambda \) is monic by definition; \(e \) is epic is not so easy in general.
Thus, \(c \in \ker(h) \), and \(s(c) = a + \text{im}(f) \).

Exactness at \(\text{coker}(g) \): The composition \(\text{coker}(f) \to \text{coker}(g) \to \text{coker}(h) \) is clearly zero. Take \(b + \text{im}(g) \) with \(f(b) = h(c) \) for some \(c \in C' \). Write \(c = \beta'(b') \). Then \(\beta(b - g(b)) = h(c) - \beta(g(b)) = h(c) - h\beta(b) = 0 \). Therefore, we may replace \(b \) by \(b - g(b) \) and assume that \(f(b) = 0 \). Then \(b = d(a) \) for some \(a \). Thus, \(b + \text{im}(g) = \overline{f}(a + \text{im}(f)) \).

If \(\beta' \) is monic, then \(\beta' \ker(f) \) is monic. If \(\beta \) is epic, then clearly \(\overline{f} \) is epic.

Note: \(\overline{f} \) and \(\overline{g} \) are well defined: if \(a + \text{im}(f) = a' + \text{im}(f) \), then \(a - a' = f(e) \) for some \(e \in A' \). Then \(d(a) - d(a') = d(f(e)) = g(d'(e)) \), so \(d(a) + \text{im}(g) = d(a') + \text{im}(g) \).

Proof of the theorem

Let \(0 \to A \overset{f}{\to} B \overset{g}{\to} C \to 0 \) be an exact sequence of complexes. From the snake lemma, the following diagram is commutative with exact rows:

\[
\begin{array}{ccccccc}
0 & \to & 0 & \to & 0 & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & Z_n(A) & \to & Z_n(B) & \to & Z_n(C) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & A_n & \to & B_n & \to & C_n \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & A_{n-1} & \to & B_{n-1} & \to & C_{n-1} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & \text{ker}(d) & \to & \text{im}(g) & \to & \text{coker}(f) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & & 0 & & 0 & & 0
\end{array}
\]
The top and bottom rows come from the snake lemma. Communivity is elementary. Thus, the rows of the following diagram commute.

\[
\begin{array}{ccc}
\mathbb{A}_n & \rightarrow & \mathbb{B}_0 \\
\downarrow d & & \downarrow d \\
\mathbb{C}_n & \rightarrow & \mathbb{O}
\end{array}
\]

\[0 \rightarrow \mathbb{Z}_{n-1}(A) \rightarrow \mathbb{Z}_{n-1}(B) \rightarrow \mathbb{Z}_{n-1}(C)\]

Since \(\ker d = H_n(A) \) and \(\text{coker} d = H_{n-1}(A) \), the snake lemma gives an exact sequence

\[H_n(A) \rightarrow H_n(B) \rightarrow H_n(C) \rightarrow H_{n-1}(A) \rightarrow H_{n-2}(B) \rightarrow H_{n-1}(C)\]

Pasting these together gives the proof.

In the case of modules, we can use the proof of the snake lemma to give a formula for \(S : H_n(C) \rightarrow H_{n-1}(A) \). Let \(z \in H_n(C) \) be represented by \(\mathbf{c} \in \mathbb{C}_n \). Then \(\mathbf{c} = g(\mathbf{b}) \) for some \(\mathbf{b} \in \mathbb{B}_n \). Then \(d(\mathbf{b}) \in \mathbb{B}_{n-1}(B) \). Since we have \(d(\mathbf{c}) = 0 \) by definition, \(g(d(\mathbf{b})) = 0 \), so \(d(\mathbf{b}) = f(\mathbf{a}) \) for some \(\mathbf{a} \in \mathbb{A}_{n-1} \). As \(d(\mathbf{b}) = 0 \) and \(f \) is injective, \(\mathbf{a} \in \mathbb{Z}_{n-1}(A) \), so \(\mathbf{a} \) represents an element \(S(\mathbf{a}) \) in \(H_{n-1}(A) \). A tedious exercise shows this is the correct map.

The existence of the sequence and of the connecting homomorphism \(S \), is not the only important fact. Also important is the "naturalness" of \(S \), which we now explain and prove.
Proposition Let \[0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0 \] be a commutative diagram of complexes with exact rows. Then the diagram below commutes:

\[
\begin{array}{cccccccc}
\cdots & H_n(c) & \xrightarrow{d} & H_n(A) & \to & H_n(B) & \to & H_n(C) & \xrightarrow{d} & H_{n-1}(A) & \to & \cdots \\
\downarrow & \quad & \downarrow & & \quad & \downarrow & & \downarrow & & \downarrow & & \\
\cdots & H_n(c') & \xrightarrow{d'} & H_n(A') & \to & H_n(B') & \to & H_n(C') & \xrightarrow{d'} & H_{n-1}(A') & \to & \cdots
\end{array}
\]

Proof We prove this for modules. Since \(H_n \) is a functor, we only need prove this for the squares involving \(\delta \). So, consider the rightmost square above. We use our description of \(S \) above. Take \(c \in Z_n(C) \) representing an element of \(H_n(C) \). Then \(\gamma(c) \cdot c' \) represents its image in \(H_n(C') \). Fix \(s(c) \), write \(c = g(s) \). Then \(s(c') \) is represented by \(d(b) \). Similarly, \(s(c') \) is represented by \(s(d(b)) \), where \(b' = f(b) \), as \(g'(b') \cdot g'(b) = \delta g(b) = \delta(c) \). Now, \(d(s(c)) = d(c) = d(b) = d(b') \), so \(d(s(c)) = s(c') \). This proves commutativity. \(\Box \)

This result can be considered more abstractly, as in p. 14 of the text. There are categories \(\mathcal{L} \) and \(\mathcal{I} \) of short and long exact sequences, and the result above means that we have a functor from \(\mathcal{L} \) to \(\mathcal{I} \).