Homework Exercises 1

September 3, 2002

1. A subgroup H of a group G is said to be a characteristic subgroup if $\varphi(H) \subseteq H$ for every automorphism φ of G.

(a) Prove that a characteristic subgroup is normal.
(b) Prove that the commutator subgroup of a group is characteristic.
(c) Prove that the center of a group is characteristic.
(d) Prove that every subgroup of a cyclic group is characteristic.
(e) Prove that A_n is a characteristic subgroup of S_n. You may assume that $n \geq 5$ even though the result is true for every n.
(f) Let $H = \{e, (12)(34), (13)(24), (14)(23)\}$. Prove that H is a characteristic subgroup of S_4.
(g) Prove that no nontrivial subgroup of $\mathbb{Z}_2 \times \mathbb{Z}_2$ is characteristic.
(h) If H is a characteristic subgroup of K and K is a characteristic subgroup of G, prove that H is a characteristic subgroup of G. Find an example to show that this statement is false if characteristic is replaced by normal.
(i) Let G be a finite group. If H is the unique subgroup of G of a given order, prove that H is a characteristic subgroup of G. Conclude that if P is a normal p-Sylow subgroup of a finite group G, then P is characteristic.

2. If p and q are distinct prime numbers, prove that $\text{Aut}(\mathbb{Z}_p \times \mathbb{Z}_q) \cong \text{Aut}(\mathbb{Z}_p) \times \text{Aut}(\mathbb{Z}_q)$.

3. If G_1 and G_2 are finite groups with relatively prime orders, prove that $\text{Aut}(G_1 \times G_2) \cong \text{Aut}(G_1) \times \text{Aut}(G_2)$.

4. Find examples of finite groups G_1 and G_2 with $\text{Aut}(G_1 \times G_2) \not\cong \text{Aut}(G_1) \times \text{Aut}(G_2)$.

5. If n is a positive integer, prove that $\text{Aut}(\mathbb{Z}^n) \cong \text{Gl}_n(\mathbb{Z})$, the group of invertible $n \times n$ matrices over \mathbb{Z}, which is the group of all $n \times n$ matrices over \mathbb{Z} with determinant ± 1.

6. If $\varphi \in \text{Aut}(\mathbb{Q})$, prove that there is a nonzero rational number α so that $\varphi(x) = \alpha x$ for all $x \in \mathbb{Q}$.

1
7. If \(\varphi \in \text{Aut}(\mathbb{R}) \) is continuous, prove that there is a nonzero real number \(\alpha \) so that
\[\varphi(x) = \alpha x \text{ for all } x \in \mathbb{R}. \]

8. Show that there exist non-continuous automorphisms of \(\mathbb{R} \).

(Hints: first prove that \(\mathbb{R} \times \mathbb{R} \cong \mathbb{R} \) as groups by considering them as \(\mathbb{Q} \)-vector spaces. Next, if \(\mathbb{Q} \subseteq \mathbb{Q}(T) \subseteq \mathbb{C} \) with \(T \) a set of algebraically independent elements over \(\mathbb{Q} \) and \(\mathbb{C} \) algebraic over \(\mathbb{Q}(T) \), produce lots of field automorphisms of \(\mathbb{C} \) by finding automorphisms of \(\mathbb{Q}(T) \), and then extending them to \(\mathbb{C} \) by the isomorphism extension theorem.)

9. Define \(\varphi_i, \sigma_i \in \text{Aut}(D_n) \) by \(\varphi_i(r) = r^i \) and \(\varphi_i(f) = f \), and \(\sigma_i(r) = r \) and \(\sigma_i(f) = r^i f \).

Show that \(\sigma_i \in \text{Aut}(D_n) \) for any \(i \) and \(\varphi_i \in \text{Aut}(D_n) \) if \(\gcd(i, n) = 1 \). Prove that any automorphism of \(D_n \) is of the form \(\sigma_j \circ \varphi_i \) for some \(i, j \). Prove that \(\varphi_i \circ \varphi_j = \varphi_{ij} \) and \(\sigma_i \circ \sigma_j = \sigma_{i+j} \). Prove that \(\{ \varphi_i : \gcd(i, n) = 1 \} \) is a subgroup isomorphic to \(\mathbb{Z}_n^* \) and \(\{ \sigma_i : i \in \mathbb{Z} \} \) is a subgroup isomorphic to \(\mathbb{Z}_n \). Prove the second group is normal in \(\text{Aut}(D_n) \).

(In fact, \(\text{Aut}(D_n) \cong \mathbb{Z}_n \rtimes_{\text{id}} \text{Aut}(\mathbb{Z}_n) \).)