Some Groups of Order 27

Let $G = \langle x, y \mid x^9 = y^9 = 1, xy^4 = y^7x, yx^4 = x^7y \rangle$. In this note we determine the structure of G. For our first observation, we note that, by the symmetry of the relations, there is an automorphism φ of G with $\varphi(x) = y$ and $\varphi(y) = x$. In other words, the automorphism of the free algebra $F(\{x, y\})$ that switches x and y sends the set of relations for G to itself, which implies that we get the induced automorphism φ. One application of the existence of φ is that the orders of x and y are the same, since $\varphi(x) = y$. Since $x^9 = 1$, the division algorithm shows that the order of x is either 1, 3, or 9. We claim that G is a non-Abelian group of order 27, whose center $Z(G)$ is cyclic of order 3 and for which $G/Z(G) \cong \mathbb{Z}_3 \times \mathbb{Z}_3$. Our arguments will mostly consist of playing with the relations together with finding a homomorphic image of G of order 27 inside S_9. We will start by producing the homomorphic image. Let u and v be the 9-cycles (123456789) and (168735492), respectively. Then a computation (by hand or computer) shows that u and v satisfy the relations for G. Thus, there is a homomorphism σ from G onto the subgroup $\langle u, v \rangle$ of S_9 that sends x to u and y to v. Furthermore, the group $\langle u, v \rangle$ has order 27; this is most easily seen with a computer. This shows that $|G| \geq 27$. Moreover, since the order of x and y divides 9, and since the order of $u = \sigma(x)$ is 9 and must divide the order of x, we conclude that the order of x (and of y) is equal to 9. To explain how to find the u and v, in Maple one can get a permutation representation for a presented group, by picking a subgroup H and considering the action of G on G/H. If one picks H so that $\bigcap_{g \in G} yHg^{-1} = 1$, then G will be isomorphic to its image in $\text{Perm}(G/H)$. In this case with $H = \langle xy \rangle$, Maple yielded these values of u and v. We will be able to conclude later that H satisfies the desired condition; however, we do not need this.

We now show that $|G| = 27$ by some fairly involved computations with the relations for G. We start by obtaining simplified conjugacy relations. The equation $xy^4 = y^7x$ implies $xy^4x^{-1} = y^7$. Squaring both sides gives $xy^8x^{-1} = x^{14} = x^5$, and taking inverses of both sides yields $xyx^{-1} = y^{-5} = y^4$. From this we see that $x^2yx^{-2} = xy^4x^{-1} = (xyx^{-1})^4 = (y^4)^4 = y^{16} = y^7$. Similarly, $x^3yx^{-3} = y^4^3 = y^{64} = y$. Consequently, x^3 commutes with y; since it commutes with x, we see that $x^3 \in Z(G)$. Similarly, $y^3 \in Z(G)$. Moreover, from $yx = x^4y$ along with $x^9 = y^9 = 1$, we obtain $G = \{x^ry^s : 0 \leq r, s \leq 8\}$. This yields $|G| \leq 81$; however, this is not good enough. To do better, we first show that $Z(G) = \langle x^3, y^3 \rangle$. Suppose that $x^ny^m \in Z(G)$. Then $x^ny^m(x^n y^m)^{-1} = x$. By induction, we have $y^m xy^{-m} = x^4m$. Since $x^ny^m(x^n y^m)^{-1} = y^m xy = x^4m$ and the order of x is 9, we see that $4m \equiv 1 \mod 9$. The order of 4 mod 9 is 3; this shows m is divisible by 3. Similarly, n is divisible by 3. Thus,
While this isn’t extremely simple, it does completely determine the multiplication. \(x^ny^m \in \langle x^3, y^3 \rangle \), as desired. Since \(x^3 \) and \(y^3 \) each have order 3, we get \(|Z(G)| = 1, 3, 9 \), depending on what relations there are between \(x^3 \) and \(y^3 \). Consider the quotient group \(G/Z(G) \). This group is generated by the cosets \(\pi \) and \(\eta \). We have \(\pi^3 = 1 \) and \(\eta^3 = 1 \) since \(x^3, y^3 \in Z(G) \). Furthermore, the relation \(xy^4 = y^7x \) yields \(\bar{xy}^4 = \bar{y}^7\pi \). Since \(\bar{y}^3 = 1 \), this simplifies to \(\bar{xy}^3 = \pi \). Thus, \(G/Z(G) \) is Abelian. Because it is generated by \(\pi \) and \(\eta \) and \(\pi^3 = \eta^3 = 1 \), the group \(G/Z(G) \) can only be \(1, \mathbb{Z}_3 \), or \(\mathbb{Z}_3 \times \mathbb{Z}_3 \), up to isomorphism. However, the first two possibilities say that \(G/Z(G) \) is cyclic. If \(G/Z(G) \) is cyclic, then \(G \) is Abelian, which is false since \(G \) has a non-Abelian homomorphic image. Thus, \(G/Z(G) \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \). Consequently, \(|G/Z(G)| = 9 \). We will determine \(|G| \) by finding \(|Z(G)| \).

We show \(Z(G) \) has order 3 by showing that \(x^3 = y^{-3} \). To see this, we have

\[
(xy)^3 = x(yx)yx = xx^4(y^2x)y = xx^4x^16y^2y = x^{21}y^3 = x^3y^3.
\]

Consequently, \((xy)^3 \in Z(G) \). So, \((xy)^4 = (xy)^3xy = (xy)^3y = xx^3y^3y = x^4y^4 \). Now, this can be rewritten as

\[
x^4yxx^{-1} = x^3x^2yxx^{-1} = x^2yxx^{-1} = x(xy)x^2
\]

\[
= xyxx^2 = (y^4)x xx^2 = y^16x^4 = y^7x^4.
\]

Alternatively, \(x^4y^4 = (yx)^{-1}y^4 = yxy^3 = y^4x \). Setting \(y^7x^4 = y^4x \) and cancelling yields \(y^3 = x^{-3} \), so \(x^3y^3 = 1 \). Since \(Z(G) = \langle x^3, y^3 \rangle \) and \(x^3 \) has order 3, we conclude that \(|Z(G)| = 3 \) and so \(|G| = 27 \). As a consequence, \(G \) is isomorphic to the subgroup \(\langle u, v \rangle \) of \(S_9 \) given above. Furthermore, since \(G = \{ x^ry^s : 0 \leq r, s \leq 8 \} \) and \(y^3 = x^{-3} \), we can further say that \(G = \{ x^ry^s : 0 \leq r \leq 8, 0 \leq s \leq 2 \} \). Therefore, every element of \(G \) has a unique expression in the form \(x^ry^s \) with \(0 \leq r \leq 8, 0 \leq s \leq 2 \). Moreover, our conjugacy relations yield a formula for multiplication in \(G \). We see that

\[
(x^ry^s)(x^ny^m) = x^r(\begin{pmatrix} y^s \end{pmatrix}x^n\begin{pmatrix} y^{-s} \end{pmatrix})(\begin{pmatrix} y^s \end{pmatrix}y^n) = x^r(\begin{pmatrix} y^s \end{pmatrix}xy^{-s})^n y^{s+n}
\]

\[
= x^r\begin{pmatrix} x^s \end{pmatrix}^n y^{s+n}
\]

\[
= x^{r+ns}y^{s+n}.
\]

While this isn’t extremely simple, it does completely determine the multiplication.

To help motivate our discussion of group extensions, we try to get a better idea of the structure of \(G \). The exact sequence \(1 \to Z(G) \to G \to G/Z(G) \to 1 \) simplifies to \(1 \to \mathbb{Z}_3 \to G \to \mathbb{Z}_3 \times \mathbb{Z}_3 \to 1 \). Thus, we completely understand the subgroup \(Z(G) \) and the quotient group \(G/Z(G) \). However, there are several groups containing a normal subgroup \(N \) isomorphic to \(\mathbb{Z}_3 \) and with quotient group \(G/N \) isomorphic to \(\mathbb{Z}_3 \times \mathbb{Z}_3 \). For example, \(\mathbb{Z}_{27} \), \(\mathbb{Z}_9 \times \mathbb{Z}_3 \), and \(\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \) are three other such groups. In fact, even specifying \(Z(G) \cong \mathbb{Z}_3 \) and \(G/Z(G) \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \) is not enough; we give a second example below. More information than the subgroup \(N \) and quotient group \(G/N \) is needed to determine which group we have.

There is another way to realize \(G \) by working with a different normal subgroup. Let \(N = \langle x \rangle \). This is normal in \(G \) since \(yxy^{-1} = x^4 \). Let \(z = xy \). We have seen that \(z^3 = 1 \).
Furthermore, \(zxz^{-1} = xyxy^{-1}x^{-1} = x^4 \). We claim that \(G = \langle x, z : x^9 = z^3 = 1, zxz^{-1} = x^4 \rangle \). Let \(G' \) be this presented group. From the relations a short argument shows that \(|G'| \leq 27 \). However, we have a homomorphism from \(G' \) to \(G \) by sending \(x \) to \(x \) and \(z \) to \(xy \). The elements \(x \) and \(xy \) clearly generate \(G \); therefore, this homomorphism is surjective. Since \(|G| = 27 \), we conclude that \(|G'| = 27 \) and so \(G' \cong G \). Moreover, if \(H = \langle xy \rangle \), then we have \(G = NH \) and \(N \cap H = 1 \). Since \(N \) is normal in \(G \), this shows that \(G \) is the semidirect product of \(N \) and \(H \). Furthermore, defining \(\psi : H \to \text{Aut}(N) \) by \(\psi(h) \) is conjugation by \(h \), we obtain a group homomorphism. Since \(N \cong \mathbb{Z}_9 \), we have \(\text{Aut}(N) \cong \mathbb{Z}_9^* \cong \mathbb{Z}_6 \). The automorphism \(\psi(z) \) is the map with \(x \mapsto x^4 \). In the standard notation for \(\text{Aut}(\mathbb{Z}_9) \), we have \(\psi(z) = \sigma_4 \). This is an automorphism of order 3 since \(4^3 \equiv 1 \mod 9 \). Consequently, the homomorphism \(\psi \) is injective. As we will see, the semidirect product is determined by the subgroups \(N \) and \(H \) together with the map \(\psi \). Since \(N \) and \(H \) are Abelian, the map \(\psi \) must be nontrivial in order to obtain a non-Abelian group.

In case one wonders if the properties \(Z(G) \cong \mathbb{Z}_3 \) and \(G/Z(G) \cong \mathbb{Z}_9 \times \mathbb{Z}_3 \) together with \(G \) non-Abelian are enough to determine \(G \), we give a second example. This example is closely related to the quaternion group \(Q_8 \). Let \(\omega \) be a primitive 3rd root of unity; e.g., \(\omega = \exp(2\pi i/3) \). Let \(Q_{27} \) be the set of symbols \(\{\omega^n i^m j^n : 0 \leq n, m, p \leq 2\} \), subject to the relations \(i^3 = j^3 = \omega \) and \(ji = \omega ij \) along with \(\omega \in Z(Q_{27}) \). Then \(|Q_{27}| = 27 \). Calculations like those we have done for the quaternion group show \(Z(Q_{27}) = \langle \omega \rangle \cong \mathbb{Z}_3 \). Moreover, \(Q_{27}/Z(Q_{27}) \) is generated by \(\bar{i} \) and \(\bar{j} \), and since \(i^3 = j^3 = \omega \), we have \(\bar{i}^3 = \bar{j}^3 = 1 \). Moreover, \(\bar{i} \bar{j} = \bar{\omega} \bar{i} \bar{j} = \bar{j} \bar{i} \). Thus, \(Q_{27}/Z(Q_{27}) \) is Abelian. The group \(Q_{27}/Z(Q_{27}) \) must then be isomorphic to \(\mathbb{Z}_3 \times \mathbb{Z}_3 \). To finish this note we state without the fairly easy proof that \(Q_{27} \) has the presentation \(\langle x, y : x^9 = y^9 = 1, x^3 = y^3, yx = x^4y \rangle \). This presentation looks somewhat similar to that of the group \(G \) we studied earlier. In fact, these relations are all ones satisfied by that group except that here \(x^3 = y^3 \) while for \(G \) we had \(x^3 = y^{-3} \). In fact, an alternate presentation of \(G \) is \(\langle x, y : x^9 = y^9 = 1, x^3 = y^{-3}, yx = x^4y \rangle \), so the only difference is the negative exponent in the third relation. However, while \(G \) can be described as a semidirect product, \(Q_{27} \) cannot be so described; one can show that every nontrivial subgroup of \(Q_{27} \) contains \(\omega \); therefore, there do not exist two nontrivial subgroups \(N \) and \(H \) of \(Q_{27} \) with \(N \cap H = 1 \), a requirement to have a semidirect product.