Solutions to Some Review Problems for Exam 3

Recall that \mathbb{R}^*, the set of nonzero real numbers, is a group under multiplication, as is the set \mathbb{R}^+ of all positive real numbers.

1. Prove that the set N of matrices $A \in \text{Gl}_n(\mathbb{R})$ with $\det(A)$ equal to 1 or -1 is a normal subgroup of $\text{Gl}_n(\mathbb{R})$. Show that the function $\varphi : \text{Gl}_n(\mathbb{R}) \to \mathbb{R}^+$ defined by $\varphi(A) = \deg(A)^2$ is a group homomorphism. Use the fundamental homomorphism theorem to show that $\text{Gl}_n(\mathbb{R})/N$ is isomorphic to \mathbb{R}^+.

Solution. Let $A, B \in \text{Gl}_n(\mathbb{R})$. Then

$$\varphi(AB) = \det(AB)^2 = (\det(A)\det(B))^2 = \det(A)^2\det(B)^2 = \varphi(A)\varphi(B)$$

by properties of determinants and exponents. Therefore, φ is a group homomorphism. Its kernel is

$$\ker(\varphi) = \{A \in \text{Gl}_n(\mathbb{R}) : \varphi(A) = 1\} = \{A \in \text{Gl}_n(\mathbb{R}) : \det(A)^2 = 1\}$$

$$= \{A \in \text{Gl}_n(\mathbb{R}) : \det(A) = \pm 1\} = N.$$

This shows that N is a normal subgroup of $\text{Gl}_n(\mathbb{R})$. Finally, we note that the image of φ is all of \mathbb{R}^+ since if a is a positive real, then the diagonal matrix

$$A = \begin{pmatrix} \sqrt{a} & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & & \ddots & \cdots \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

in $\text{Gl}_n(\mathbb{R})$ has determinant \sqrt{a}, and so $\varphi(A) = a$. Consequently, by the fundamental homomorphism theorem, $\text{Gl}_n(\mathbb{R})/N$ is isomorphic to \mathbb{R}^+.

2. Let $\varphi : G \to H$ be a group isomorphism. If $g \in G$ has finite order n, show that $\varphi(g) \in H$ also has order n.

Solution. Recall that the order of an element a, when finite, is the smallest positive integer n satisfying $a^n = e$. First suppose that n is the order of $g \in G$. Then $g^n = e$. Therefore, as φ preserves the operation, $e = \varphi(g^n) = \varphi(g)^n$. Therefore, the order of $\varphi(g)$ divides n. Suppose that m is the order of $\varphi(g)$. We’ve argued that m divides n. Now, as $\varphi(g)^m = e$, we have $\varphi(g^m) = e$. Since φ is an isomorphism, it is 1-1, and so $g^m = e$. This means n divides m. Thus, $m = n$ as m divides n and vice-versa.

3. Let G be a group and let N be a normal subgroup of G. If G is Abelian, prove that G/N is Abelian.

Solution. Let $x, y \in G/N$. Then there are $a, b \in G$ with $x = Na$ and $y = Nb$. Then

$$xy = Nab = Nab = Nba = NbNa = yx$$
since G is Abelian. Thus, G/N is Abelian.
4. Let G and H be groups. Define $\pi : G \times H \to G$ by $\pi(g, h) = g$. Show that π is a group homomorphism, that π is onto, and that $\ker(\varphi) = \{(e, h) : h \in H\}$. Conclude that $(G \times H)/\ker(\varphi)$ is isomorphic to G.

Solution. Let $(g, h), (g', h') \in G \times H$. Then

$$\pi((g, h)(g', h')) = \pi((gg', hh')) = gg' = \pi(g, h)\pi(g', h'),$$

so π is a group homomorphism. It is onto because if $g \in G$, then $(g, e) \in G \times H$ and $\pi(g, e) = g$. Finally, $\ker(\pi) = \{(g, h) : \pi(g, h) = e\} = \{(g, h) : g = e\}$.

5. Keep the notation of the previous problem. Show that the map $\varphi : H \to G \times H$ given by $\varphi(h) = (e, h)$ is a group homomorphism, and that H and $\ker(\pi)$ are isomorphic.

Solution. Let $h, h' \in H$. Then $\varphi(hh') = (e, hh') = (e, h)(e, h') = \varphi(h)\varphi(h')$, so φ is a group homomorphism. It is 1-1 since $\ker(\varphi) = \{h : \varphi(h) = (e, e)\} = \{h : (e, h) = (e, e)\} = \{e\}$. Finally, its image is exactly $\ker(\pi)$ from the previous problem. Therefore, φ is a 1-1, onto group homomorphism from H to $\ker(\pi)$, and so these two groups are isomorphic.

6. Define $\varphi : \mathbb{R}^* \to \mathbb{R}^+$ by $\varphi(a) = |a|$. Show that φ is a group homomorphism. Determine the kernel N of φ and show that $\mathbb{R}^*/N \cong \mathbb{R}^+$.

Solution. Let $a, b \in \mathbb{R}^*$. Then $\varphi(ab) = |ab| = |a||b| = \varphi(a)\varphi(b)$ by properties of the absolute value function. Therefore, φ is a group homomorphism. Its kernel is $N = \{a \in \mathbb{R}^* : |a| = 1\} = \{1, -1\}$. Moreover, as $|a| = a$ for each positive real, φ is onto. Thus, by the fundamental homomorphism theorem, $\mathbb{R}^*/N \cong \mathbb{R}^+$.

7. Let G be a group and N a normal subgroup of G. Suppose that for each $a, b \in G$ we have $aba^{-1}b^{-1} \in N$. Prove that G/N is Abelian.

Solution. Let $x, y \in G/N$. Then there are $a, b \in G$ with $x = Na$ and $y = Nb$. Consequently, $xy = NaNb = Nab$ and $yx = NbNa = Nba$. Now, $Nab = Nba$ if and only if $(ab)(ba)^{-1} \in N$. However, $(ab)(ba)^{-1} = aba^{-1}b^{-1}$. Since this is in N by assumption, $xy = yx$ and, since this holds for all $x, y \in G/N$, we conclude that G/N is Abelian.

8. Let G be a finite group. Suppose that H is a subgroup of G with $|H| = n$ and such that H is the only subgroup of G of order n. Prove that H is a normal subgroup of G.

Solution. Recall that H is normal iff $Ha = H_a$ for all $a \in G$, iff $aHa^{-1} = H$ for all $a \in G$. The map $H \to aHa^{-1}$ sending h to aha^{-1} is a bijection; it is onto by definition of aHa^{-1}, and is 1-1 since if $aha^{-1} = aka^{-1}$, then cancellation shows $h = k$. Then
this will yield $|aHa^{-1}| = |H|$. Consequently, if H is the only subgroup of G of order n, we get $aHa^{-1} = H$ for all $a \in G$, and so H is normal in G.

9. Prove that \mathbb{R}^* is isomorphic to $\mathbb{R}^+ \times \{1, -1\}$ by defining an explicit function from one to the other, and showing that it is a group homomorphism, 1-1, and onto.

Solution. Define $\varphi : \mathbb{R}^* \to \mathbb{R}^+ \times \{1, -1\}$ by $\varphi(a) = (|a|, \text{sgn}(a))$, where sgn is the sign function. That is, $\text{sgn}(a) = 1$ if $a > 0$ and $\text{sgn}(a) = -1$ if $a < 0$. Note that sgn preserves multiplication. Therefore, if $a, b \in \mathbb{R}^*$, then

$$\varphi(ab) = (|ab|, \text{sgn}(ab)) = (|a||b|, \text{sgn}(a)\text{sgn}(b)) = (|a|, \text{sgn}(a))(|b|, \text{sgn}(b)) = \varphi(a)\varphi(b).$$

Therefore, φ is a group homomorphism. Note that $a = \text{sgn}(a)|a|$ for each nonzero real number a. From this we see that if $\varphi(a) = \varphi(b)$, then $|a| = |b|$ and $\text{sgn}(a) = \text{sgn}(b)$, so $a = b$ from this formula. Finally, It is onto since if $(\alpha, s) \in \mathbb{R}^+ \times \{1, -1\}$, then $a = s\alpha$ maps to (α, s).

10. Find all solutions to the equation $x^2 - 3x + 2 = 0$ in \mathbb{Z}_6.

Solution. Note that this factors as $(x - 2)(x - 1)$. This implies that 1, 5 are solutions. However, if we plug in all six elements in, we’ll see that 5 is also a solution.

11. Find all solutions to $x^2 = x$ in \mathbb{Z}_{15}.

Solution. Note this question is asking for all the idempotents of \mathbb{Z}_{15}. Testing all elements shows that the idempotents are 0, 1, 6, 10.

12. Find all units in the ring $\mathbb{Z} \times \mathbb{Q}$.

Solution. Let $(n, q) \in \mathbb{Z} \times \mathbb{Q}$. If it has an inverse (m, r), then $(n, q)(m, r) = (1, 1)$. This means $mn = 1 = qr$. Since $m, n \in \mathbb{Z}$, we see that $n = \pm 1$ and $m = n$. Since $q, r \in \mathbb{Q}$ and every nonzero element of \mathbb{Q} has a multiplicative inverse in \mathbb{Q}, the only restriction is $q \neq 0$. Therefore, the set of units is

$$\{(n, q) : n = \pm 1, q \in \mathbb{Q} - \{0\}\}.$$

13. A subring S of a ring R is a nonempty subset of R which is a ring under the induced operations of R. Show that a nonempty subset S of a ring R is a subring if $a, b \in S$ implies $a - b \in S$ and $a, b \in S$ implies $ab \in S$.

Solution. We need to know that S is closed under addition, multiplication, and negation. All the other properties are inherited from S being a subset of R (that is, associativity of both operations, commutativity of addition, the distributive property). Note that 0 $\in S$ if S is closed under addition and negation. So, we need to prove that if
$a, b \in S$ implies $a - b \in S$, then S is closed under addition and negation. This is really a group theory argument. Let $a \in S$. Then with $b = a$, we see $a - a \in S$. Therefore, $0 \in S$. Next, with $a = 0$, for any $b \in S$ we have $-b = a - b \in S$. Therefore, S is closed under negation. Finally, if $a, b \in S$, we have $a, -b \in S$ by the previous line. Therefore, $a - (-b) \in S$, so $a + b \in S$. This shows S is closed under addition.

14. Let R be a ring with unity 1. If the order of 1 in the group $(R, +)$ is finite, say n, show that each element of $(R, +)$ has finite order, and that the order of each element divides n.

Solution. Let $a \in R$. Then with $b = a$, we see $a - a \in S$. Therefore, $0 \in S$. Next, with $a = 0$, for any $b \in S$ we have $-b = a - b \in S$. Therefore, S is closed under negation. Finally, if $a, b \in S$, we have $a, -b \in S$ by the previous line. Therefore, $a - (-b) \in S$, so $a + b \in S$. This shows S is closed under addition.

15. Let $R = \mathbb{Z}_p[x]$, the ring of polynomials over \mathbb{Z}_p. Show that each nonzero element has order p (in the additive group). Why is R infinite?

Solution. This essentially follows from the previous problem, knowing that $1 \in \mathbb{Z}_p[x]$ is the same as $1 \in \mathbb{Z}_p$, which has order p. The previous problem shows that the order of anything divides p. Thus, the order is 1 or p. The only element with order 1 is 0. Therefore, each nonzero element has order p. Note that $\mathbb{Z}_p[x]$ is infinite because there are infinitely many monomials x^n.

16. Let $R = \{a + bi : a, b \in \mathbb{Z}\}$. Show that R is a subring of \mathbb{C}. Also, determine the units of R. Using complex conjugation is likely to help to determine the units.

Solution. We use the result of Problem 13 to simplify this. Let $x, y \in R$ and write $x = a + bi$ and $y = c + di$ for some $a, b, c, d \in \mathbb{Z}$. Then

$$x - y = (a + bi) - (c + di) = (a - c) + (b - d)i \in R$$

and

$$xy = (a + bi)(c + di) = (ac - bd) + (ad + bc)i \in R$$

since \mathbb{Z} is closed under addition, subtraction, and multiplication. Thus, R is a subring of \mathbb{C}. To determine the units, suppose that, with notation above, $xy = 1$. Then $\overline{xy} = 1$, and multiplying these equations together gives $(x\overline{x})(y\overline{y}) = 1$. We see that $\|x\|^2 = x\overline{x} = a^2 + b^2$. Since $a, b \in \mathbb{Z}$, the square $\|x\|^2$ of the norm is an integer. Then $\|x\|^2\|y\|^2 = 1$ means $\|x\|^2 = 1$. This says $a^2 + b^2 = 1$. Again, because a, b are integers, we must have $a = 0$ and $b = \pm 1$ or $a = \pm 1$ and $b = 0$. This yields that the units of R are $\{1, -1, i, -i\}$.

4
17. Prove or disprove that $R = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ is a subring of \mathbb{R}.

Solution. This is not a subring, but the argument will use some things we haven’t seen. The easiest way to see it is to see that R is not closed under multiplication. For, $x = \sqrt{2} \in R$ but $x^2 = \sqrt{4} \notin R$; to see that, if $x^2 \in R$, then $x^2 = a + bx$ for some $a, b \in \mathbb{Z}$. Then $x^2 - bx - a = 0$. This is a polynomial equation for which x is a root. But $x^3 - 2 = 0$ is another such polynomial equation. If we take the greatest common divisor of these two polynomials, the result is another polynomial equation for x, but by applying the Euclidean algorithm for this, one sees that gcd is the constant polynomial 1. This cannot be a polynomial equation for x since $x \neq 0$. This is a contradiction.